Class SemiExplicit¶
Defined in File SemiExplicit.m
Class Documentation¶
-
class SemiExplicit : public Indigo.DAE.System¶
-
Class container for a semi explicit system of ODEs/DAEs of the form:
\[ \mathbf{x}' = \mathbf{f}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) = \mathbf{M}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t )^{-1} \mathbf{f}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) \]or equivalently:
\[ \mathbf{F}( \mathbf{x}, \mathbf{x}', \mathbf{v}, t ) = \mathbf{x}' - \mathbf{f}( \mathbf{x}, \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) = \mathbf{0} \]with optional veils \( \mathbf{v}( \mathbf{x}, t ) \) of the form:
\[\begin{split} \mathbf{v}( \mathbf{x}, t ) = \left{\begin{array}{c} v_1( \mathbf{x}, t ) \\ v_2( \mathbf{x}, v_1, t ) \\ v_3( \mathbf{x}, v_1, v_2, t ) \\ \vdots \\ v_n( \mathbf{x}, v_1, \dots, v_{n-1}, t ) \end{array}\right. \end{split}\]optional linear system for index-1 variables \mathbf{y} of the form:
\[ \mathbf{M}( \mathbf{x}, \mathbf{v}, t ) \mathbf{y} = \mathbf{f}( \mathbf{x}, \mathbf{v}, t ) \]and optional invariants of the form:
\[ \mathbf{h}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) = \mathbf{0} \]where \( \mathbf{x} \) are the unknown functions (states) of the independent variable \( t \).
Public Functions
-
function SemiExplicit(t_name, t_num_eqns, t_num_sysy, t_num_veil, t_num_invs)¶
-
Class constructor for a semi-explicit system.
- Parameters
-
t_name – The name of the system.
t_num_eqns – The number of equations of the system.
t_num_sysy – The number of linear index-1 variables of the system.
t_num_veil – The number of (user-defined) veils of the system.
t_num_invs – The number of invariants of the system.
-
function F(x, x_dot, y, v, t)¶
-
Evaluate the system function \( \mathbf{F} \).
- Parameters
-
x – States \( \mathbf{x} \).
x_dot – States derivatives \( \mathbf{x}' \).
y – Linear index-1 variables \( \mathbf{y} \).
v – Veils \( \mathbf{v} \).
t – Independent variable \( t \).
- Returns
-
The system function \( \mathbf{F} \).
-
function JF_x(x, x_dot, y, v, t)¶
-
Evaluate the Jacobian of the system function \( \mathbf{F} \) with respect to the states \( \mathbf{x} \):
\[ \mathbf{JF}_{\mathbf{x}}( \mathbf{x}, \mathbf{x}', \mathbf{v}, t ) = \dfrac{ \partial \mathbf{F}( \mathbf{x}, \mathbf{x}', \mathbf{v}, t ) }{ \partial \mathbf{x} }. \]- Parameters
-
x – States \( \mathbf{x} \).
x_dot – States derivatives \( \mathbf{x}' \).
y – Linear index-1 variables \( \mathbf{y} \).
v – Veils \( \mathbf{v} \).
t – Independent variable \( t \).
- Returns
-
The Jacobian \( \mathbf{JF}_{\mathbf{x}} \).
-
function JF_x_dot()¶
-
Evaluate the Jacobian of the system function \( \mathbf{F} \) with respect to the states derivative \( \mathbf{x}' \):
\[ \mathbf{JF}_{\mathbf{x}'}( \mathbf{x}, \mathbf{x}', \mathbf{v}, t ) = \dfrac{ \partial \mathbf{F}( \mathbf{x}, \mathbf{x}', \mathbf{v}, t ) }{ \partial \mathbf{x}' }. \]- Parameters
-
x – States \( \mathbf{x} \).
x_dot – States derivatives \( \mathbf{x}' \).
y – Linear index-1 variables \( \mathbf{y} \).
v – Veils \( \mathbf{v} \).
t – Independent variable \( t \).
- Returns
-
The Jacobian \( \mathbf{JF}_{\mathbf{x}'} \).
-
function JF_y(x, x_dot, v, t)¶
-
Evaluate the Jacobian of the system function \( \mathbf{F} \) with respect to the veils \( \mathbf{y} \):
\[ \mathbf{JF}_{\mathbf{y}}( \mathbf{x}, \mathbf{x}', \mathbf{v}, t ) = \dfrac{ \partial \mathbf{F}( \mathbf{x}, \mathbf{x}', \mathbf{v}, t ) }{ \partial \mathbf{y} }. \]- Parameters
-
x – States \( \mathbf{x} \).
x_dot – States derivatives \( \mathbf{x}' \).
v – Veils \( \mathbf{v} \).
t – Independent variable \( t \).
- Returns
-
The Jacobian \( \mathbf{JF}_{\mathbf{y}} \).
-
function JF_v(x, x_dot, v, t)¶
-
Evaluate the Jacobian of the system function \( \mathbf{F} \) with respect to the veils \( \mathbf{v} \):
\[ \mathbf{JF}_{\mathbf{v}}( \mathbf{x}, \mathbf{x}', \mathbf{v}, t ) = \dfrac{ \partial \mathbf{F}( \mathbf{x}, \mathbf{x}', \mathbf{v}, t ) }{ \partial \mathbf{v} }. \]- Parameters
-
x – States \( \mathbf{x} \).
x_dot – States derivatives \( \mathbf{x}' \).
v – Veils \( \mathbf{v} \).
t – Independent variable \( t \).
- Returns
-
The Jacobian \( \mathbf{JF}_{\mathbf{v}} \).
-
function f(x, v, y, t)¶
-
Evaluate the system function \( \mathbf{f} \) as:
\[ \mathbf{f}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) = \mathbf{M}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t )^{-1} \mathbf{f}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) \]- Parameters
-
x – States \( \mathbf{x} \).
v – Veils \( \mathbf{v} \).
y – Linear index-1 variables \( \mathbf{y} \).
t – Independent variable \( t \).
- Returns
-
The system function \( \mathbf{f} \).
-
function Jf_x(x, x_dot, y, v, t)¶
-
Evaluate the Jacobian of the system function \( \mathbf{f} \) with respect to the states \( \mathbf{x} \):
\[ \mathbf{Jf}_{\mathbf{x}}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) = \dfrac{ \partial \mathbf{f}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) }{ \partial \mathbf{x} } = \dfrac{ \partial \mathbf{M}^{-1} \mathbf{f} }{ \partial \mathbf{x} \]- Parameters
-
x – States \( \mathbf{x} \).
x_dot – States derivatives \( \mathbf{x}' \).
v – Veils \( \mathbf{v} \).
y – Linear index-1 variables \( \mathbf{y} \).
t – Independent variable \( t \).
- Returns
-
The Jacobian \( \mathbf{Jf}_{\mathbf{x}} \)..
-
function Jf_y(x, x_dot, y, v, t)¶
-
Evaluate the Jacobian of the system function \( \mathbf{f} \) with respect to the states \( \mathbf{y} \):
\[ \mathbf{Jf}_{\mathbf{y}}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) = \dfrac{ \partial \mathbf{f}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) }{ \partial \mathbf{y} } = \dfrac{ \partial \mathbf{M}^{-1} \mathbf{f} }{ \partial \mathbf{v} \]- Parameters
-
x – States \( \mathbf{x} \).
x_dot – States derivatives \( \mathbf{x}' \).
y – Linear states \( \mathbf{y} \).
v – Veils \( \mathbf{v} \).
t – Independent variable \( t \).
- Returns
-
The Jacobian \( \mathbf{Jf}_{\mathbf{y}} \)..
-
function Jf_v(x, x_dot, y, v, t)¶
-
Evaluate the Jacobian of the system function \( \mathbf{f} \) with respect to the states \( \mathbf{x} \):
\[ \mathbf{Jf}_{\mathbf{v}}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) = \dfrac{ \partial \mathbf{f}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) }{ \partial \mathbf{v} } = \dfrac{ \partial \mathbf{M}^{-1} \mathbf{f} }{ \partial \mathbf{v} \]- Parameters
-
x – States \( \mathbf{x} \).
x_dot – States derivatives \( \mathbf{x}' \).
y – Linear states \( \mathbf{y} \).
v – Veils \( \mathbf{v} \).
t – Independent variable \( t \).
- Returns
-
The Jacobian \( \mathbf{Jf}_{\mathbf{v}} \)..
-
virtual function Ms(x, y, v, t)¶
-
Evaluate the sytem matrix \( \mathbf{M} \).
- Parameters
-
x – States \( \mathbf{x} \).
y – Linear index-1 variables \( \mathbf{y} \).
v – Veils \( \mathbf{v} \).
t – Independent variable \( t \).
- Returns
-
The system matrix \( \mathbf{M} \).
-
virtual function TMs_x(x, y, v, t)¶
-
Evaluate the tensor of the system matrix \( \mathbf{M} \) with respect to the states \( \mathbf{x} \):
\[ \mathbf{TM}_{\mathbf{x}}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) = \dfrac{ \partial \mathbf{M}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) }{ \partial \mathbf{x} }. \]- Parameters
-
x – States \( \mathbf{x} \).
y – Linear index-1 variables \( \mathbf{y} \).
v – Veils \( \mathbf{v} \).
t – Independent variable \( t \).
- Returns
-
The tensor \( \mathbf{TM}_{\mathbf{x}} \).
-
virtual function TMs_y(x, y, v, t)¶
-
Evaluate the tensor of the system matrix \( \mathbf{M} \) with respect to the states \( \mathbf{x} \):
\[ \mathbf{TM}_{\mathbf{y}}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) = \dfrac{ \partial \mathbf{M}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) }{ \partial \mathbf{y} }. \]- Parameters
-
x – States \( \mathbf{x} \).
y – Linear index-1 variables \( \mathbf{y} \).
v – Veils \( \mathbf{v} \).
t – Independent variable \( t \).
- Returns
-
The tensor \( \mathbf{TM}_{\mathbf{y}} \).
-
virtual function TMs_v(x, y, v, t)¶
-
Evaluate the tensor of the system matrix \( \mathbf{M} \) with respect to the states \( \mathbf{v} \):
\[ \mathbf{TM}_{\mathbf{y}}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) = \dfrac{ \partial \mathbf{M}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) }{ \partial \mathbf{v} }. \]- Parameters
-
x – States \( \mathbf{x} \).
y – Linear index-1 variables \( \mathbf{y} \).
v – Veils \( \mathbf{v} \).
t – Independent variable \( t \).
- Returns
-
The tensor \( \mathbf{TM}_{\mathbf{v}} \).
-
virtual function fs(x, v, y, t)¶
-
Evaluate the sytem vector \( \mathbf{f} \).
- Parameters
-
x – States \( \mathbf{x} \).
y – Linear index-1 variables \( \mathbf{y} \).
v – Veils \( \mathbf{v} \).
t – Independent variable \( t \).
- Returns
-
The system vector \( \mathbf{f} \).
-
virtual function Jfs_x(x, v, y, t)¶
-
Evaluate the Jacobian of the system vector \( \mathbf{f} \) with respect to the states \( \mathbf{x} \):
\[ \mathbf{Jf}_{\mathbf{x}}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) = \dfrac{ \partial \mathbf{f}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) }{ \partial \mathbf{x} }. \]- Parameters
-
x – States \( \mathbf{x} \).
y – Linear index-1 variables \( \mathbf{y} \).
v – Veils \( \mathbf{v} \).
t – Independent variable \( t \).
- Returns
-
The Jacobian \( \mathbf{Jf}_{\mathbf{x}} \)..
-
virtual function Jfs_y(x, v, y, t)¶
-
Evaluate the Jacobian of the system vector \( \mathbf{f} \) with respect to the veils \( \mathbf{y} \):
\[ \mathbf{Jf}_{\mathbf{y}}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) = \dfrac{ \partial \mathbf{f}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) }{ \partial \mathbf{y} }. \]- Parameters
-
x – States \( \mathbf{x} \).
y – Linear index-1 variables \( \mathbf{y} \).
v – Veils \( \mathbf{v} \).
t – Independent variable \( t \).
- Returns
-
The Jacobian \( \mathbf{Jf}_{\mathbf{y}} \)..
-
virtual function Jfs_v(x, v, y, t)¶
-
Evaluate the Jacobian of the system vector \( \mathbf{f} \) with respect to the veils \( \mathbf{v} \):
\[ \mathbf{Jf}_{\mathbf{v}}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) = \dfrac{ \partial \mathbf{f}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) }{ \partial \mathbf{v} }. \]- Parameters
-
x – States \( \mathbf{x} \).
y – Linear index-1 variables \( \mathbf{y} \).
v – Veils \( \mathbf{v} \).
t – Independent variable \( t \).
- Returns
-
The Jacobian \( \mathbf{Jf}_{\mathbf{v}} \)..
Public Static Functions
-
static function whattype()¶
-
Get the system type.
- Returns
-
The system type.
-
static function is_explicit()¶
-
Check if the system is explicit.
- Returns
-
True if the system is explicit, false otherwise.
-
static function is_semiexplicit()¶
-
Check if the system is semiexplicit.
- Returns
-
True if the system is semiexplicit, false otherwise.
-
static function is_implicit()¶
-
Check if the system is implicit.
- Returns
-
True if the system is implicit, false otherwise.
-
function SemiExplicit(t_name, t_num_eqns, t_num_sysy, t_num_veil, t_num_invs)¶