Program Listing for File SemiExplicit.m¶
↰ Return to documentation for file (+Indigo/+DAE/SemiExplicit.m
)
%
%> Class container for a semi explicit system of ODEs/DAEs of the form:
%>
%> \f[
%> \mathbf{x}' = \mathbf{f}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) =
%> \mathbf{M}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t )^{-1}
%> \mathbf{f}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t )
%> \f]
%>
%> or equivalently:
%>
%> \f[
%> \mathbf{F}( \mathbf{x}, \mathbf{x}', \mathbf{v}, t ) =
%> \mathbf{x}' - \mathbf{f}( \mathbf{x}, \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) =
%> \mathbf{0}
%> \f]
%>
%> with *optional* veils \f$ \mathbf{v}( \mathbf{x}, t ) \f$ of the form:
%>
%> \f[
%> \mathbf{v}( \mathbf{x}, t ) = \left{\begin{array}{c}
%> v_1( \mathbf{x}, t ) \\
%> v_2( \mathbf{x}, v_1, t ) \\
%> v_3( \mathbf{x}, v_1, v_2, t ) \\
%> \vdots \\
%> v_n( \mathbf{x}, v_1, \dots, v_{n-1}, t )
%> \end{array}\right.
%> \f]
%>
%> *optional* linear system for index-1 variables \mathbf{y} of the form:
%>
%> \f[
%> \mathbf{M}( \mathbf{x}, \mathbf{v}, t ) \mathbf{y} = \mathbf{f}( \mathbf{x}, \mathbf{v}, t )
%> \f]
%>
%> and *optional* invariants of the form:
%>
%> \f[
%> \mathbf{h}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) = \mathbf{0}
%> \f]
%>
%> where \f$ \mathbf{x} \f$ are the unknown functions (states) of the
%> independent variable \f$ t \f$.
%
classdef SemiExplicit < Indigo.DAE.System
%
methods
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Class constructor for a semi-explicit system.
%>
%> \param t_name The name of the system.
%> \param t_num_eqns The number of equations of the system.
%> \param t_num_sysy The number of linear index-1 variables of the system.
%> \param t_num_veil The number of (user-defined) veils of the system.
%> \param t_num_invs The number of invariants of the system.
%
function this = SemiExplicit( t_name, t_num_eqns, t_num_sysy, t_num_veil, t_num_invs )
this@Indigo.DAE.System(t_name, t_num_eqns, t_num_sysy, t_num_veil, t_num_invs);
end
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Evaluate the system function \f$ \mathbf{F} \f$.
%>
%> \param x States \f$ \mathbf{x} \f$.
%> \param x_dot States derivatives \f$ \mathbf{x}' \f$.
%> \param y Linear index-1 variables \f$ \mathbf{y} \f$.
%> \param v Veils \f$ \mathbf{v} \f$.
%> \param t Independent variable \f$ t \f$.
%>
%> \return The system function \f$ \mathbf{F} \f$.
%
function out = F( this, x, x_dot, y, v, t )
out = x_dot - this.f(x, y, v, t);
end
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Evaluate the Jacobian of the system function \f$ \mathbf{F} \f$ with
%> respect to the states \f$ \mathbf{x} \f$:
%>
%> \f[
%> \mathbf{JF}_{\mathbf{x}}( \mathbf{x}, \mathbf{x}', \mathbf{v}, t ) =
%> \dfrac{
%> \partial \mathbf{F}( \mathbf{x}, \mathbf{x}', \mathbf{v}, t )
%> }{
%> \partial \mathbf{x}
%> }.
%> \f]
%>
%> \param x States \f$ \mathbf{x} \f$.
%> \param x_dot States derivatives \f$ \mathbf{x}' \f$.
%> \param y Linear index-1 variables \f$ \mathbf{y} \f$.
%> \param v Veils \f$ \mathbf{v} \f$.
%> \param t Independent variable \f$ t \f$.
%>
%> \return The Jacobian \f$ \mathbf{JF}_{\mathbf{x}} \f$.
%
function out = JF_x( this, x, x_dot, y, v, t )
out = -this.Jf_x(x, x_dot, y, v, t) - ...
this.Jf_y(x, x_dot, y, v, t) * this.Jy_x(x, v, t) - ...
this.Jf_v(x, x_dot, y, v, t) * this.Jv_x(x, v, t);
end
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Evaluate the Jacobian of the system function \f$ \mathbf{F} \f$ with
%> respect to the states derivative \f$ \mathbf{x}' \f$:
%>
%> \f[
%> \mathbf{JF}_{\mathbf{x}'}( \mathbf{x}, \mathbf{x}', \mathbf{v}, t ) =
%> \dfrac{
%> \partial \mathbf{F}( \mathbf{x}, \mathbf{x}', \mathbf{v}, t )
%> }{
%> \partial \mathbf{x}'
%> }.
%> \f]
%>
%> \param x States \f$ \mathbf{x} \f$.
%> \param x_dot States derivatives \f$ \mathbf{x}' \f$.
%> \param y Linear index-1 variables \f$ \mathbf{y} \f$.
%> \param v Veils \f$ \mathbf{v} \f$.
%> \param t Independent variable \f$ t \f$.
%>
%> \return The Jacobian \f$ \mathbf{JF}_{\mathbf{x}'} \f$.
%
function out = JF_x_dot( this, ~, ~, ~, ~, ~ )
out = eye(this.m_num_eqns);
end
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Evaluate the Jacobian of the system function \f$ \mathbf{F} \f$ with
%> respect to the veils \f$ \mathbf{y} \f$:
%>
%> \f[
%> \mathbf{JF}_{\mathbf{y}}( \mathbf{x}, \mathbf{x}', \mathbf{v}, t ) =
%> \dfrac{
%> \partial \mathbf{F}( \mathbf{x}, \mathbf{x}', \mathbf{v}, t )
%> }{
%> \partial \mathbf{y}
%> }.
%> \f]
%>
%> \param x States \f$ \mathbf{x} \f$.
%> \param x_dot States derivatives \f$ \mathbf{x}' \f$.
%> \param v Veils \f$ \mathbf{v} \f$.
%> \param t Independent variable \f$ t \f$.
%>
%> \return The Jacobian \f$ \mathbf{JF}_{\mathbf{y}} \f$.
%
function out = JF_y( this, x, x_dot, v, t )
out = -this.Jf_y(x, x_dot, v, t);
end
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Evaluate the Jacobian of the system function \f$ \mathbf{F} \f$ with
%> respect to the veils \f$ \mathbf{v} \f$:
%>
%> \f[
%> \mathbf{JF}_{\mathbf{v}}( \mathbf{x}, \mathbf{x}', \mathbf{v}, t ) =
%> \dfrac{
%> \partial \mathbf{F}( \mathbf{x}, \mathbf{x}', \mathbf{v}, t )
%> }{
%> \partial \mathbf{v}
%> }.
%> \f]
%>
%> \param x States \f$ \mathbf{x} \f$.
%> \param x_dot States derivatives \f$ \mathbf{x}' \f$.
%> \param v Veils \f$ \mathbf{v} \f$.
%> \param t Independent variable \f$ t \f$.
%>
%> \return The Jacobian \f$ \mathbf{JF}_{\mathbf{v}} \f$.
%
function out = JF_v( this, x, x_dot, v, t )
out = -this.Jf_v(x, x_dot, v, t);
end
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Evaluate the system function \f$ \mathbf{f} \f$ as:
%>
%> \f[
%> \mathbf{f}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) =
%> \mathbf{M}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t )^{-1}
%> \mathbf{f}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t )
%> \f]
%>
%> \param x States \f$ \mathbf{x} \f$.
%> \param v Veils \f$ \mathbf{v} \f$.
%> \param y Linear index-1 variables \f$ \mathbf{y} \f$.
%> \param t Independent variable \f$ t \f$.
%>
%> \return The system function \f$ \mathbf{f} \f$.
%
function out = f( this, x, v, y, t )
out = this.Ms(x, v, y, t) \ this.fs(x, v, y, t);
end
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Evaluate the Jacobian of the system function \f$ \mathbf{f} \f$ with
%> respect to the states \f$ \mathbf{x} \f$:
%>
%> \f[
%> \mathbf{Jf}_{\mathbf{x}}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) =
%> \dfrac{
%> \partial \mathbf{f}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t )
%> }{
%> \partial \mathbf{x}
%> } =
%> \dfrac{
%> \partial \mathbf{M}^{-1} \mathbf{f}
%> }{
%> \partial \mathbf{x}
%> \f]
%>
%> \param x States \f$ \mathbf{x} \f$.
%> \param x_dot States derivatives \f$ \mathbf{x}' \f$.
%> \param v Veils \f$ \mathbf{v} \f$.
%> \param y Linear index-1 variables \f$ \mathbf{y} \f$.
%> \param t Independent variable \f$ t \f$.
%>
%> \return The Jacobian \f$ \mathbf{Jf}_{\mathbf{x}} \f$..
%
function out = Jf_x( this, x, x_dot, y, v, t )
TMs_x = this.TMs_x(x, v, y, t);
TMs_y = this.TMs_y(x, v, y, t);
TMs_v = this.TMs_v(x, v, y, t);
Jfs_x = this.Jfs_x(x, y, v, t);
Jfs_y = this.Jfs_y(x, y, v, t);
Jfs_v = this.Jfs_v(x, y, v, t);
Jv_x = this.Jv_x(x, v, t);
out = zeros(this.m_num_eqns);
rsh = [size(TMs_v, 1), size(TMs_v, 3)];
for i = 1:size(TMs_x, 3)
out(:,i) = (TMs_x(:,:,i) + reshape(TMs_v(:,i,:), rsh) * Jv_x) * x_dot;
end
out = this.Ms(x, y, v, t) \ (Jfs_x + Jfs_v * Jv_x - out);
end
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Evaluate the Jacobian of the system function \f$ \mathbf{f} \f$ with
%> respect to the states \f$ \mathbf{y} \f$:
%>
%> \f[
%> \mathbf{Jf}_{\mathbf{y}}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) =
%> \dfrac{
%> \partial \mathbf{f}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t )
%> }{
%> \partial \mathbf{y}
%> } =
%> \dfrac{
%> \partial \mathbf{M}^{-1} \mathbf{f}
%> }{
%> \partial \mathbf{v}
%> \f]
%>
%> \param x States \f$ \mathbf{x} \f$.
%> \param x_dot States derivatives \f$ \mathbf{x}' \f$.
%> \param y Linear states \f$ \mathbf{y} \f$.
%> \param v Veils \f$ \mathbf{v} \f$.
%> \param t Independent variable \f$ t \f$.
%>
%> \return The Jacobian \f$ \mathbf{Jf}_{\mathbf{y}} \f$..
%
function out = Jf_y( this, x, x_dot, y, v, t )
TMs_y = this.TMs_y(x, y, v, t);
Jfs_y = this.Jfs_y(x, y, v, t);
out = zeros(this.m_num_eqns, this.m_num_veil);
for i = 1:size(TMs_y, 3)
out(:,i) = TMs_y(:,:,i) * x_dot;
end
out = this.Ms(x, v, t) \ (Jfs_y - out);
end
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Evaluate the Jacobian of the system function \f$ \mathbf{f} \f$ with
%> respect to the states \f$ \mathbf{x} \f$:
%>
%> \f[
%> \mathbf{Jf}_{\mathbf{v}}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) =
%> \dfrac{
%> \partial \mathbf{f}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t )
%> }{
%> \partial \mathbf{v}
%> } =
%> \dfrac{
%> \partial \mathbf{M}^{-1} \mathbf{f}
%> }{
%> \partial \mathbf{v}
%> \f]
%>
%> \param x States \f$ \mathbf{x} \f$.
%> \param x_dot States derivatives \f$ \mathbf{x}' \f$.
%> \param y Linear states \f$ \mathbf{y} \f$.
%> \param v Veils \f$ \mathbf{v} \f$.
%> \param t Independent variable \f$ t \f$.
%>
%> \return The Jacobian \f$ \mathbf{Jf}_{\mathbf{v}} \f$..
%
function out = Jf_v( this, x, x_dot, y, v, t )
TMs_v = this.TMs_v(x, y, v, t);
Jfs_v = this.Jfs_v(x, y, v, t);
out = zeros(this.m_num_eqns, this.m_num_veil);
for i = 1:size(TMs_v, 3)
out(:,i) = TMs_v(:,:,i) * x_dot;
end
out = this.M(x, y, v, t) \ (Jfs_v - out);
end
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
end
%
methods (Abstract)
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Evaluate the sytem matrix \f$ \mathbf{M} \f$.
%>
%> \param x States \f$ \mathbf{x} \f$.
%> \param y Linear index-1 variables \f$ \mathbf{y} \f$.
%> \param v Veils \f$ \mathbf{v} \f$.
%> \param t Independent variable \f$ t \f$.
%>
%> \return The system matrix \f$ \mathbf{M} \f$.
%
Ms( this, x, y, v, t )
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Evaluate the tensor of the system matrix \f$ \mathbf{M} \f$ with respect
%> to the states \f$ \mathbf{x} \f$:
%>
%> \f[
%> \mathbf{TM}_{\mathbf{x}}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) =
%> \dfrac{
%> \partial \mathbf{M}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t )
%> }{
%> \partial \mathbf{x}
%> }.
%> \f]
%>
%> \param x States \f$ \mathbf{x} \f$.
%> \param y Linear index-1 variables \f$ \mathbf{y} \f$.
%> \param v Veils \f$ \mathbf{v} \f$.
%> \param t Independent variable \f$ t \f$.
%>
%> \return The tensor \f$ \mathbf{TM}_{\mathbf{x}} \f$.
%
TMs_x( this, x, y, v, t )
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Evaluate the tensor of the system matrix \f$ \mathbf{M} \f$ with respect
%> to the states \f$ \mathbf{x} \f$:
%>
%> \f[
%> \mathbf{TM}_{\mathbf{y}}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) =
%> \dfrac{
%> \partial \mathbf{M}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t )
%> }{
%> \partial \mathbf{y}
%> }.
%> \f]
%>
%> \param x States \f$ \mathbf{x} \f$.
%> \param y Linear index-1 variables \f$ \mathbf{y} \f$.
%> \param v Veils \f$ \mathbf{v} \f$.
%> \param t Independent variable \f$ t \f$.
%>
%> \return The tensor \f$ \mathbf{TM}_{\mathbf{y}} \f$.
%
TMs_y( this, x, y, v, t )
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Evaluate the tensor of the system matrix \f$ \mathbf{M} \f$ with respect
%> to the states \f$ \mathbf{v} \f$:
%>
%> \f[
%> \mathbf{TM}_{\mathbf{y}}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) =
%> \dfrac{
%> \partial \mathbf{M}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t )
%> }{
%> \partial \mathbf{v}
%> }.
%> \f]
%>
%> \param x States \f$ \mathbf{x} \f$.
%> \param y Linear index-1 variables \f$ \mathbf{y} \f$.
%> \param v Veils \f$ \mathbf{v} \f$.
%> \param t Independent variable \f$ t \f$.
%>
%> \return The tensor \f$ \mathbf{TM}_{\mathbf{v}} \f$.
%
TMs_v( this, x, y, v, t )
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Evaluate the sytem vector \f$ \mathbf{f} \f$.
%>
%> \param x States \f$ \mathbf{x} \f$.
%> \param y Linear index-1 variables \f$ \mathbf{y} \f$.
%> \param v Veils \f$ \mathbf{v} \f$.
%> \param t Independent variable \f$ t \f$.
%>
%> \return The system vector \f$ \mathbf{f} \f$.
%
fs( this, x, v, y, t )
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Evaluate the Jacobian of the system vector \f$ \mathbf{f} \f$ with
%> respect to the states \f$ \mathbf{x} \f$:
%>
%> \f[
%> \mathbf{Jf}_{\mathbf{x}}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) =
%> \dfrac{
%> \partial \mathbf{f}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t )
%> }{
%> \partial \mathbf{x}
%> }.
%> \f]
%>
%> \param x States \f$ \mathbf{x} \f$.
%> \param y Linear index-1 variables \f$ \mathbf{y} \f$.
%> \param v Veils \f$ \mathbf{v} \f$.
%> \param t Independent variable \f$ t \f$.
%>
%> \return The Jacobian \f$ \mathbf{Jf}_{\mathbf{x}} \f$..
%
Jfs_x( this, x, v, y, t )
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Evaluate the Jacobian of the system vector \f$ \mathbf{f} \f$ with
%> respect to the veils \f$ \mathbf{y} \f$:
%>
%> \f[
%> \mathbf{Jf}_{\mathbf{y}}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) =
%> \dfrac{
%> \partial \mathbf{f}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t )
%> }{
%> \partial \mathbf{y}
%> }.
%> \f]
%>
%> \param x States \f$ \mathbf{x} \f$.
%> \param y Linear index-1 variables \f$ \mathbf{y} \f$.
%> \param v Veils \f$ \mathbf{v} \f$.
%> \param t Independent variable \f$ t \f$.
%>
%> \return The Jacobian \f$ \mathbf{Jf}_{\mathbf{y}} \f$..
%
Jfs_y( this, x, v, y, t )
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Evaluate the Jacobian of the system vector \f$ \mathbf{f} \f$ with
%> respect to the veils \f$ \mathbf{v} \f$:
%>
%> \f[
%> \mathbf{Jf}_{\mathbf{v}}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) =
%> \dfrac{
%> \partial \mathbf{f}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t )
%> }{
%> \partial \mathbf{v}
%> }.
%> \f]
%>
%> \param x States \f$ \mathbf{x} \f$.
%> \param y Linear index-1 variables \f$ \mathbf{y} \f$.
%> \param v Veils \f$ \mathbf{v} \f$.
%> \param t Independent variable \f$ t \f$.
%>
%> \return The Jacobian \f$ \mathbf{Jf}_{\mathbf{v}} \f$..
%
Jfs_v( this, x, v, y, t )
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
end
%
methods (Static)
%
%> Get the system type.
%>
%> \return The system type.
%
function out = whattype()
out = 'semiexplicit';
end
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Check if the system is explicit.
%>
%> \return True if the system is explicit, false otherwise.
%
function out = is_explicit()
out = false;
end
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Check if the system is semiexplicit.
%>
%> \return True if the system is semiexplicit, false otherwise.
%
function out = is_semiexplicit()
out = true;
end
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Check if the system is implicit.
%>
%> \return True if the system is implicit, false otherwise.
%
function out = is_implicit()
out = false;
end
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
end
%
end