Program Listing for File System.m¶
↰ Return to documentation for file (+Indigo/+DAE/System.m
)
%
%> Class container for the system of Ordinary Differential Equations (ODEs)
%> or Differential Algebraic Equations (DAEs). This class is the base class
%> for more specific systems, such as the explicit, semi-explicit and implicit
%> systems. The system *must* define the abstract methods. The system is defined
%> by the following equations:
%>
%> \f[
%> \mathbf{F}( \mathbf{x}, \mathbf{x}', \mathbf{y}, \mathbf{v}, t ) = \mathbf{0}
%> \f]
%>
%> with *optional* veils \f$ \mathbf{v}( \mathbf{x}, t ) \f$ of the form:
%>
%> \f[
%> \mathbf{v}( \mathbf{x}, t ) = \left{\begin{array}{c}
%> v_1( \mathbf{x}, t ) \\
%> v_2( \mathbf{x}, v_1, t ) \\
%> v_3( \mathbf{x}, v_1, v_2, t ) \\
%> \vdots \\
%> v_n( \mathbf{x}, v_1, \dots, v_{n-1}, t )
%> \end{array}\right.
%> \f]
%>
%> *optional* linear system for index-1 variables \mathbf{y} of the form:
%>
%> \f[
%> \mathbf{A}( \mathbf{x}, \mathbf{v}, t ) \mathbf{y} = \mathbf{b}( \mathbf{x}, \mathbf{v}, t )
%> \f]
%>
%> and *optional* invariants of the form:
%>
%> \f[
%> \mathbf{h}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) = \mathbf{0}
%> \f]
%>
%> where \f$ \mathbf{x} \f$ are the unknown functions (states) of the
%> independent variable \f$ t \f$.
%
classdef System < handle
%
properties (SetAccess = protected, Hidden = true)
%
%> Name of the system.
%
m_name;
%
%> Number of equations of the system.
%
m_num_eqns;
%
%> Number of linear index-1 variables of the system.
%
m_num_sysy
%
%> Number of veils of the system.
%
m_num_veil;
%
%> Number of invariants of the system.
%
m_num_invs;
%
end
%
methods
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Class constructor for a system that requires the following inputs:
%>
%> \param t_name The name of the system.
%> \param t_num_eqns The number of equations of the system.
%> \param t_num_sysy The number of linear index-1 variables of the system.
%> \param t_num_veil The number of (user-defined) veils of the system.
%> \param t_num_invs The number of invariants of the system.
%
function this = System( t_name, t_num_eqns, t_num_sysy, t_num_veil, t_num_invs )
this.m_name = t_name;
this.m_num_eqns = t_num_eqns;
this.m_num_sysy = t_num_sysy;
this.m_num_veil = t_num_veil;
this.m_num_invs = t_num_invs;
end
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Get the system name.
%>
%> \return The system name.
%
function out = get_name( this )
out = this.m_name;
end
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Get the number of equations of the system.
%>
%> \return The number of equations of the system.
%
function t_num_eqns = get_num_eqns( this )
t_num_eqns = this.m_num_eqns;
end
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Set the number of equations of the system.
%>
%> \param t_num_eqns The number of equations of the system.
%
function set_num_eqns( this, t_num_eqns )
this.m_num_eqns = t_num_eqns;
end
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Get the number of linear index-1 variables of the system.
%>
%> \return The number of linear index-1 variables of the system.
%
function t_num_sysy = get_num_sysy( this )
t_num_sysy = this.m_num_sysy;
end
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Set the number of linear index-1 variables of the system.
%>
%> \param t_num_sysy The number of linear index-1 variables of the system.
%
function set_num_sysy( this, t_num_sysy )
this.m_num_sysy = t_num_sysy;
end
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Get the number of veils of the system.
%>
%> \return The number of veils of the system.
%
function t_num_veil = get_num_veil( this )
t_num_veil = this.m_num_veil;
end
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Set the number of veils of the system.
%>
%> \param t_num_veil The number of veils of the system.
%
function set_num_veil( this, t_num_veil )
this.m_num_veil = t_num_veil;
end
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Get the number of invariants of the system.
%>
%> \return The number of invariants of the system.
%
function t_num_invs = get_num_invs( this )
t_num_invs = this.m_num_invs;
end
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Set the number of invariants of the system.
%>
%> \param t_num_invs The number of invariants of the
%> system.
%
function set_num_invs( this, t_num_invs )
this.m_num_invs = t_num_invs;
end
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Calculate the linear states \f$ \mathbf{y} \f$.
%>
%> \param x States \f$ \mathbf{x} \f$.
%> \param v Veils \f$ \mathbf{v} \f$.
%> \param t Independent variable \f$ t \f$.
%>
%> \return The linear states \f$ \mathbf{y} \f$.
%
function out = y( this, x, v, t )
out = this.A(x, v, t)\this.b(x, v, t);
end
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Calculate the Jacobial of the linear states \f$ \mathbf{y} \f$ with
%> respect to the states \f$ \mathbf{x} \f$:
%>
%> \f[
%> \dfrac{\partial}{\partial\mathbf{x}} \left[ \mathbf{A}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t )
%> \mathbf{y} - \mathbf{b}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) \right] = \mathbf{0}
%> \f]
%>
%> which, if expanded applying the chain rule, can be written as:
%>
%> \f[
%> (\mathbf{TA}_{\mathbf{x}} + \mathbf{TA}_{\mathbf{v}}\mathbf{Jv}_{\mathbf{x}})\mathbf{y} + \mathbf{A}\mathbf{Jy}_\mathbf{x}
%> = \mathbf{Jb}_{\mathbf{x}} + \mathbf{Jb}_{\mathbf{v}}\mathbf{Jv}_{\mathbf{x}}
%> \f]
%>
%> \param x States \f$ \mathbf{x} \f$.
%> \param y Linear states \f$ \mathbf{y} \f$.
%> \param v Veils \f$ \mathbf{v} \f$.
%> \param t Independent variable \f$ t \f$.
%>
%> \return The Jacobian of the linear states with respect to the states
%> \mathbf{Jy}_\mathbf{x}.
%
function out = Jy_x( this, x, y, v, t )
if this.m_num_sysy == 0
out = zeros(this.m_num_sysy, this.m_num_eqns);
else
TA_x = this.TA_x(x, v, t);
TA_v = this.TA_v(x, v, t);
Jb_x = this.Jb_x(x, v, t);
Jb_v = this.Jb_v(x, v, t);
Jv_x = this.Jv_x(x, v, t);
TA_v_Jv_x = zeros(this.m_num_sysy, this.m_num_eqns);
if this.m_num_sysy ~= 0
for i = 1:size(TA_v, 3)
TA_v_Jv_x(:,i) = TA_v(:,:,i)*Jv_x;
end
end
out = zeros(this.m_num_sysy, this.m_num_eqns);
for i = 1:size(TA_x, 3)
out(:,i) = (TA_x(:,:,i) + TA_v_Jv_x) * y;
end
out = this.A(x, t) \ (Jb_x + Jb_v*Jv_x - out);
end
end
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
end
%
methods (Abstract)
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Evaluate the system function \f$ \mathbf{F} \f$.
%>
%> \param x States \f$ \mathbf{x} \f$.
%> \param x_dot States derivatives \f$ \mathbf{x}' \f$.
%> \param y Linear index-1 variables \f$ \mathbf{y} \f$.
%> \param v Veils \f$ \mathbf{v} \f$.
%> \param t Independent variable \f$ t \f$.
%>
%> \return The system function \f$ \mathbf{F} \f$.
%
F( this, x, x_dot, y, v, t )
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Evaluate the Jacobian of the system function \f$ \mathbf{F} \f$ with
%> respect to the states \f$ \mathbf{x} \f$:
%>
%> \f[
%> \mathbf{JF}_{\mathbf{x}}( \mathbf{x}, \mathbf{x}', \mathbf{y}, \mathbf{v}, t ) =
%> \dfrac{
%> \partial \mathbf{F}( \mathbf{x}, \mathbf{x}', \mathbf{y}, \mathbf{v}, t )
%> }{
%> \partial \mathbf{x}
%> }.
%> \f]
%>
%> \param x States \f$ \mathbf{x} \f$.
%> \param x_dot States derivatives \f$ \mathbf{x}' \f$.
%> \param y Linear index-1 variables \f$ \mathbf{y} \f$.
%> \param v Veils \f$ \mathbf{v} \f$.
%> \param t Independent variable \f$ t \f$.
%>
%> \return The Jacobian \f$ \mathbf{JF}_{\mathbf{x}} \f$.
%
JF_x( this, x, x_dot, y, v, t )
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Evaluate the Jacobian of the system function \f$ \mathbf{F} \f$ with
%> respect to the states \f$ \mathbf{x} \f$:
%>
%> \f[
%> \mathbf{JF}_{\mathbf{x}}( \mathbf{x}, \mathbf{x}', \mathbf{y}, \mathbf{v}, t ) =
%> \dfrac{
%> \partial \mathbf{F}( \mathbf{x}, \mathbf{x}', \mathbf{y}, \mathbf{v}, t )
%> }{
%> \partial \mathbf{x}
%> }.
%> \f]
%>
%> \param x States \f$ \mathbf{x} \f$.
%> \param x_dot States derivatives \f$ \mathbf{x}' \f$.
%> \param y Linear index-1 variables \f$ \mathbf{y} \f$.
%> \param v Veils \f$ \mathbf{v} \f$.
%> \param t Independent variable \f$ t \f$.
%>
%> \return The Jacobian \f$ \mathbf{JF}_{\mathbf{x}} \f$.
%
JF_y( this, x, x_dot, y, v, t )
%
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Evaluate the Jacobian of the system function \f$ \mathbf{F} \f$ with
%> respect to the states derivative \f$ \mathbf{x}' \f$:
%>
%> \f[
%> \mathbf{JF}_{\mathbf{x}'}( \mathbf{x}, \mathbf{x}', \mathbf{y}, \mathbf{v}, t ) =
%> \dfrac{
%> \partial \mathbf{F}( \mathbf{x}, \mathbf{x}', \mathbf{y}, \mathbf{v}, t )
%> }{
%> \partial \mathbf{x}'
%> }.
%> \f]
%>
%> \param x States \f$ \mathbf{x} \f$.
%> \param x_dot States derivatives \f$ \mathbf{x}' \f$.
%> \param y Linear index-1 variables \f$ \mathbf{y} \f$.
%> \param v Veils \f$ \mathbf{v} \f$.
%> \param t Independent variable \f$ t \f$.
%>
%> \return The Jacobian \f$ \mathbf{JF}_{\mathbf{x}'} \f$.
%
JF_x_dot( this, x, x_dot, y, v, t )
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Evaluate the Jacobian of the system function \f$ \mathbf{F} \f$ with
%> respect to the veils \f$ \mathbf{v} \f$:
%>
%> \f[
%> \mathbf{JF}_{\mathbf{v}}( \mathbf{x}, \mathbf{x}', \mathbf{y}, \mathbf{v}, t ) =
%> \dfrac{
%> \partial \mathbf{F}( \mathbf{x}, \mathbf{x}', \mathbf{y}, \mathbf{v}, t )
%> }{
%> \partial \mathbf{v}
%> }.
%> \f]
%>
%> \param x States \f$ \mathbf{x} \f$.
%> \param x_dot States derivatives \f$ \mathbf{x}' \f$.
%> \param y Linear index-1 variables \f$ \mathbf{y} \f$.
%> \param v Veils \f$ \mathbf{v} \f$.
%> \param t Independent variable \f$ t \f$.
%>
%> \return The Jacobian \f$ \mathbf{JF}_{\mathbf{v}} \f$.
%
JF_v( this, x, x_dot, y, v, t )
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Evaluate the system veils \f$ \mathbf{v} \f$:
%>
%> \f[
%> \mathbf{v}( \mathbf{x}, t ) = \mathbf{0}.
%> \f]
%>
%> \param x States \f$ \mathbf{x} \f$.
%> \param t Independent variable \f$ t \f$.
%>
%> \return The system veils \f$ \mathbf{v} \f$..
%
v( this, x, t )
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Evaluate the Jacobian of the system veils \f$ \mathbf{v} \f$
%> with respect to the states \f$ \mathbf{x} \f$:
%>
%> \f[
%> \mathbf{Jv}_{\mathbf{x}}( \mathbf{x}, t ) =
%> \dfrac{
%> \partial \mathbf{v}( \mathbf{x}, t )
%> }{
%> \partial \mathbf{x}
%> }.
%> \f]
%>
%> \param x States \f$ \mathbf{x} \f$.
%> \param v Veils \f$ \mathbf{v} \f$.
%> \param t Independent variable \f$ t \f$.
%>
%> \return The Jacobian \f$ \mathbf{Jv}_{\mathbf{x}} \f$.
%
Jv_x( this, x, v, t )
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Evaluate the system invariants \f$ \mathbf{h} \f$:
%>
%> \f[
%> \mathbf{h}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) = \mathbf{0}.
%> \f]
%>
%> \param x States \f$ \mathbf{x} \f$.
%> \param y Linear index-1 variables \f$ \mathbf{y} \f$.
%> \param v Veils \f$ \mathbf{v} \f$.
%> \param t Independent variable \f$ t \f$.
%>
%> \return The invariants \f$ \mathbf{h} \f$..
%
h( this, x, y, v, t )
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Evaluate the Jacobian of the system invariants \f$ \mathbf{h} \f$ with
%> respect to the states \f$ \mathbf{x} \f$:
%>
%> \f[
%> \mathbf{Jh}_{\mathbf{x}}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) =
%> \dfrac{
%> \partial \mathbf{h}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t )
%> }{
%> \partial \mathbf{x}
%> }.
%> \f]
%>
%> \param x States \f$ \mathbf{x} \f$.
%> \param y Linear index-1 variables \f$ \mathbf{y} \f$.
%> \param v Veils \f$ \mathbf{v} \f$.
%> \param t Independent variable \f$ t \f$.
%>
%> \return The Jacobian \f$ \mathbf{Jh}_{\mathbf{x}} \f$.
%
Jh_x( this, x, y, v, t )
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Evaluate the Jacobian of the system invariants \f$ \mathbf{h} \f$ with
%> respect to the veils \f$ \mathbf{v} \f$:
%>
%> \f[
%> \mathbf{Jh}_{\mathbf{v}}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) =
%> \dfrac{
%> \partial \mathbf{h}
%> }{
%> \partial \mathbf{v}
%> }.
%> \f]
%>
%> \param x States \f$ \mathbf{x} \f$.
%> \param y Linear index-1 variables \f$ \mathbf{y} \f$.
%> \param v Veils \f$ \mathbf{v} \f$.
%> \param t Independent variable \f$ t \f$.
%>
%> \return The Jacobian \f$ \mathbf{Jh}_{\mathbf{v}} \f$.
%
Jh_y( this, x, y, v, t )
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Evaluate the Jacobian of the system invariants \f$ \mathbf{h} \f$ with
%> respect to the veils \f$ \mathbf{v} \f$:
%>
%> \f[
%> \mathbf{Jh}_{\mathbf{v}}( \mathbf{x}, \mathbf{y}, \mathbf{v}, t ) =
%> \dfrac{
%> \partial \mathbf{h}
%> }{
%> \partial \mathbf{v}
%> }.
%> \f]
%>
%> \param x States \f$ \mathbf{x} \f$.
%> \param y Linear index-1 variables \f$ \mathbf{y} \f$.
%> \param v Veils \f$ \mathbf{v} \f$.
%> \param t Independent variable \f$ t \f$.
%>
%> \return The Jacobian \f$ \mathbf{Jh}_{\mathbf{v}} \f$.
%
Jh_v( this, x, y, v, t )
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Get the system type.
%>
%> \return The system type.
%
whattype()
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Check if the system is explicit.
%>
%> \return True if the system is explicit, false otherwise.
%
is_explicit()
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Check if the system is explicit.
%>
%> \return True if the system is explicit, false otherwise.
%
is_semiexplicit()
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Check if the system is implicit.
%>
%> \return True if the system is implicit, false otherwise.
%
is_implicit()
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
%> Return true if (x,t) is in the domain of the DAE system
%
in_domain( this, x, t )
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
end
%
end