Optimist  0.0.0
A C++ library for optimization
Loading...
Searching...
No Matches
Optimist::Optimizer::Optimizer< Real, N, DerivedSolver, ForceEigen > Class Template Reference

Class container for the multi-dimensional optimizer. More...

#include <Optimizer.hh>

Inherits Optimist::SolverBase< Real, N, 1, DerivedSolver, false >.

Public Types

using Vector = typename SolverBase<Real, N, 1, DerivedSolver, ForceEigen>::InputType
using RowVector = typename SolverBase<Real, N, 1, DerivedSolver, ForceEigen>::FirstDerivativeType
using Matrix = typename SolverBase<Real, N, 1, DerivedSolver, ForceEigen>::SecondDerivativeType
Public Types inherited from Optimist::SolverBase< Real, N, 1, DerivedSolver, false >
using InputType
using OutputType
using TraceType
using FirstDerivativeType
using SecondDerivativeType

Public Member Functions

 Optimizer ()
std::string name () const
Integer gradient_evaluations () const
Integer max_gradient_evaluations () const
void max_gradient_evaluations (Integer t_gradient_evaluations)
Integer hessian_evaluations () const
Integer max_hessian_evaluations () const
void max_hessian_evaluations (Integer t_hessian_evaluations)
Public Member Functions inherited from Optimist::SolverBase< Real, N, 1, DerivedSolver, false >
 SolverBase ()
InputType const & lower_bound () const
InputType const & upper_bound () const
void bounds (InputType const &t_lower_bound, InputType const &t_upper_bound)
constexpr Integer input_dimension () const
constexpr Integer output_dimension () const
Integer function_evaluations () const
void max_function_evaluations (Integer t_max_function_evaluations)
Integer iterations () const
Integer max_iterations () const
Real alpha () const
Integer relaxations () const
Integer max_relaxations () const
Real tolerance () const
void verbose_mode (bool t_verbose)
void enable_verbose_mode ()
void disable_verbose_mode ()
void damped_mode (bool t_damped)
void enable_damped_mode ()
void disable_damped_mode ()
std::string task () const
bool converged () const
const TraceTypetrace () const
std::ostream & ostream () const
bool solve (FunctionLambda &&function, InputType const &x_ini, InputType &x_sol)
bool rootfind (FunctionBase< Real, FunInDim, FunOutDim, DerivedFunction, ForceEigen &&FunOutDim==1 > const &function, InputType const &x_ini, InputType &x_sol)
bool optimize (FunctionBase< Real, FunInDim, FunOutDim, DerivedFunction, ForceEigen &&FunOutDim==1 > const &function, InputType const &x_ini, InputType &x_sol)
std::string name () const

Static Public Attributes

static constexpr bool is_rootfinder {false}
static constexpr bool is_optimizer {true}

Protected Member Functions

template<typename GradientLambda>
bool evaluate_gradient (GradientLambda &&gradient, Vector const &x, Matrix &out)
template<typename HessianLambda>
bool evaluate_hessian (HessianLambda &&hessian, Vector const &x, Matrix &out)
bool solve (FunctionLambda &&function, Vector const &x_ini, Vector &x_sol)
template<typename FunctionLambda, typename GradientLambda>
bool solve (FunctionLambda &&function, GradientLambda &&gradient, Vector const &x_ini, Vector &x_sol)
template<typename FunctionLambda, typename GradientLambda, typename HessianLambda>
bool solve (FunctionLambda &&function, GradientLambda &&gradient, HessianLambda &&hessian, Vector const &x_ini, Vector &x_sol)
Protected Member Functions inherited from Optimist::SolverBase< Real, N, 1, DerivedSolver, false >
Integer first_derivative_evaluations () const
Integer max_first_derivative_evaluations () const
Integer second_derivative_evaluations () const
Integer max_second_derivative_evaluations () const
void reset ()
bool evaluate_function (FunctionLambda &&function, InputType const &x, OutputType &out)
bool evaluate_first_derivative (FirstDerivativeLambda &&function, InputType const &x, FirstDerivativeType &out)
bool evaluate_second_derivative (SecondDerivativeLambda &&function, InputType const &x, SecondDerivativeType &out)
void store_trace (InputType const &x)
bool damp (FunctionLambda &&function, InputType const &x_old, InputType const &function_old, InputType const &step_old, InputType &x_new, InputType &function_new, InputType &step_new)
void header ()
void bottom ()
void info (Real residuals, std::string const &notes="-")

Friends

class SolverBase< Real, N, 1, Optimizer< Real, N, DerivedSolver, ForceEigen > >

Additional Inherited Members

Protected Attributes inherited from Optimist::SolverBase< Real, N, 1, DerivedSolver, false >
InputType m_lower_bound
InputType m_upper_bound
Integer m_function_evaluations
Integer m_first_derivative_evaluations
Integer m_second_derivative_evaluations
Integer m_max_function_evaluations
Integer m_max_first_derivative_evaluations
Integer m_max_second_derivative_evaluations
Integer m_iterations
Integer m_max_iterations
Real m_alpha
Integer m_relaxations
Integer m_max_relaxations
Real m_tolerance
bool m_verbose
bool m_damped
std::ostream * m_ostream
std::string m_task
bool m_converged
TraceType m_trace

Detailed Description

template<typename Real, Integer N, typename DerivedSolver, bool ForceEigen = false>
class Optimist::Optimizer::Optimizer< Real, N, DerivedSolver, ForceEigen >

Optimizer

This section describes the scalar optimizers implemented in Optimist. The available optimizers are derivative and non-derivative methods. Derivative methods employ the function's derivative to find the minimum with high accuracy, while non-derivative methods approximate the derivative for improved efficiency in certain scenarios.

Here, the solvers are implemented for solving problems of the form

\[ \min_{\mathbf{x}} \mathbf{f}(\mathbf{x}) = 0 \quad \text{with} \quad \mathbf{f}: \mathbb{R}^n \rightarrow \mathbb{R} \text{,} \]

which consist in finding the minimum of the cost function \(\mathbf{f}\) by iteratively updating the current iterate \(\mathbf{x}_k\) until convergence is achieved. The solvers require the cost function \(\mathbf{f}\) and its first derivative \(\mathbf{f}^{\prime}(\mathbf{x})\) to be provided by the user. Alternatively, the derivative can be approximated numerically using finite differences, depending on the problem's complexity and the user's preference.

Template Parameters
NDimension of the optimization problem.
DerivedSolverDerived solver class.
ForceEigenForce the use of Eigen types for input and output.

Member Typedef Documentation

◆ Matrix

template<typename Real, Integer N, typename DerivedSolver, bool ForceEigen = false>
using Optimist::Optimizer::Optimizer< Real, N, DerivedSolver, ForceEigen >::Matrix = typename SolverBase<Real, N, 1, DerivedSolver, ForceEigen>::SecondDerivativeType

◆ RowVector

template<typename Real, Integer N, typename DerivedSolver, bool ForceEigen = false>
using Optimist::Optimizer::Optimizer< Real, N, DerivedSolver, ForceEigen >::RowVector = typename SolverBase<Real, N, 1, DerivedSolver, ForceEigen>::FirstDerivativeType

◆ Vector

template<typename Real, Integer N, typename DerivedSolver, bool ForceEigen = false>
using Optimist::Optimizer::Optimizer< Real, N, DerivedSolver, ForceEigen >::Vector = typename SolverBase<Real, N, 1, DerivedSolver, ForceEigen>::InputType

Constructor & Destructor Documentation

◆ Optimizer()

template<typename Real, Integer N, typename DerivedSolver, bool ForceEigen = false>
Optimist::Optimizer::Optimizer< Real, N, DerivedSolver, ForceEigen >::Optimizer ( )
inline

Class constructor for the multi-dimensional optimizer.

Member Function Documentation

◆ evaluate_gradient()

template<typename Real, Integer N, typename DerivedSolver, bool ForceEigen = false>
template<typename GradientLambda>
bool Optimist::Optimizer::Optimizer< Real, N, DerivedSolver, ForceEigen >::evaluate_gradient ( GradientLambda && gradient,
Vector const & x,
Matrix & out )
inlineprotected

Evaluate the gradient function.

Template Parameters
GradientLambdaThe gradient lambda function type.
Parameters
[in]gradientGradient lambda function.
[in]xInput point.
[out]outGradient value.
Returns
The boolean flag for successful evaluation.

◆ evaluate_hessian()

template<typename Real, Integer N, typename DerivedSolver, bool ForceEigen = false>
template<typename HessianLambda>
bool Optimist::Optimizer::Optimizer< Real, N, DerivedSolver, ForceEigen >::evaluate_hessian ( HessianLambda && hessian,
Vector const & x,
Matrix & out )
inlineprotected

Evaluate the hessian function.

Template Parameters
HessianLambdaThe hessian lambda function type.
Parameters
[in]hessianHessian lambda function.
[in]xInput point.
[out]outHessian value.
Returns
The boolean flag for successful evaluation.

◆ gradient_evaluations()

template<typename Real, Integer N, typename DerivedSolver, bool ForceEigen = false>
Integer Optimist::Optimizer::Optimizer< Real, N, DerivedSolver, ForceEigen >::gradient_evaluations ( ) const
inline

Get the number of gradient evaluations.

Returns
The number of gradient evaluations.

◆ hessian_evaluations()

template<typename Real, Integer N, typename DerivedSolver, bool ForceEigen = false>
Integer Optimist::Optimizer::Optimizer< Real, N, DerivedSolver, ForceEigen >::hessian_evaluations ( ) const
inline

Get the number of hessian evaluations.

Returns
The number of hessian evaluations.

◆ max_gradient_evaluations() [1/2]

template<typename Real, Integer N, typename DerivedSolver, bool ForceEigen = false>
Integer Optimist::Optimizer::Optimizer< Real, N, DerivedSolver, ForceEigen >::max_gradient_evaluations ( ) const
inline

Get the number of maximum allowed gradient evaluations.

Returns
The number of maximum allowed gradient evaluations.

◆ max_gradient_evaluations() [2/2]

template<typename Real, Integer N, typename DerivedSolver, bool ForceEigen = false>
void Optimist::Optimizer::Optimizer< Real, N, DerivedSolver, ForceEigen >::max_gradient_evaluations ( Integer t_gradient_evaluations)
inline

Set the number of maximum allowed gradient evaluations.

Parameters
[in]t_gradient_evaluationsThe number of maximum allowed gradient evaluations.

◆ max_hessian_evaluations() [1/2]

template<typename Real, Integer N, typename DerivedSolver, bool ForceEigen = false>
Integer Optimist::Optimizer::Optimizer< Real, N, DerivedSolver, ForceEigen >::max_hessian_evaluations ( ) const
inline

Get the number of maximum allowed hessian evaluations.

Returns
The number of maximum allowed hessian evaluations.

◆ max_hessian_evaluations() [2/2]

template<typename Real, Integer N, typename DerivedSolver, bool ForceEigen = false>
void Optimist::Optimizer::Optimizer< Real, N, DerivedSolver, ForceEigen >::max_hessian_evaluations ( Integer t_hessian_evaluations)
inline

Set the number of maximum allowed hessian evaluations.

Parameters
[in]t_hessian_evaluationsThe number of maximum allowed hessian evaluations.

◆ name()

template<typename Real, Integer N, typename DerivedSolver, bool ForceEigen = false>
std::string Optimist::Optimizer::Optimizer< Real, N, DerivedSolver, ForceEigen >::name ( ) const
inline

Get the solver name.

Returns
The solver name.

◆ solve() [1/3]

template<typename Real, Integer N, typename DerivedSolver, bool ForceEigen = false>
template<typename FunctionLambda, typename GradientLambda, typename HessianLambda>
bool Optimist::Optimizer::Optimizer< Real, N, DerivedSolver, ForceEigen >::solve ( FunctionLambda && function,
GradientLambda && gradient,
HessianLambda && hessian,
Vector const & x_ini,
Vector & x_sol )
inlineprotected

Solve the root-finding problem given the function, and its gradient and Hessian.

Template Parameters
FunctionLambdaThe lambda function type.
GradientLambdaThe gradient lambda function type.
HessianLambdaThe hessian lambda function type.
Parameters
[in]functionFunction lambda.
[in]gradientGradient lambda function.
[in]hessianHessian lambda function.
[in]x_iniInitialization point.
[out]x_solSolution point.
Returns
The convergence boolean flag.

◆ solve() [2/3]

template<typename Real, Integer N, typename DerivedSolver, bool ForceEigen = false>
template<typename FunctionLambda, typename GradientLambda>
bool Optimist::Optimizer::Optimizer< Real, N, DerivedSolver, ForceEigen >::solve ( FunctionLambda && function,
GradientLambda && gradient,
Vector const & x_ini,
Vector & x_sol )
inlineprotected

Solve the root-finding problem given the function, and its gradient.

Template Parameters
FunctionLambdaThe lambda function type.
GradientLambdaThe gradient lambda function type.
Parameters
[in]functionFunction lambda.
[in]gradientGradient lambda function.
[in]x_iniInitialization point.
[out]x_solSolution point.
Returns
The convergence boolean flag.

◆ solve() [3/3]

template<typename Real, Integer N, typename DerivedSolver, bool ForceEigen = false>
bool Optimist::Optimizer::Optimizer< Real, N, DerivedSolver, ForceEigen >::solve ( FunctionLambda && function,
Vector const & x_ini,
Vector & x_sol )
inlineprotected

Solve the root-finding problem given the function, and without derivatives.

Template Parameters
FunctionLambdaThe lambda function type.
Parameters
[in]functionFunction lambda.
[in]x_iniInitialization point.
[out]x_solSolution point.
Returns
The convergence boolean flag.

◆ SolverBase< Real, N, 1, Optimizer< Real, N, DerivedSolver, ForceEigen > >

template<typename Real, Integer N, typename DerivedSolver, bool ForceEigen = false>
friend class SolverBase< Real, N, 1, Optimizer< Real, N, DerivedSolver, ForceEigen > >
friend

Member Data Documentation

◆ is_optimizer

template<typename Real, Integer N, typename DerivedSolver, bool ForceEigen = false>
bool Optimist::Optimizer::Optimizer< Real, N, DerivedSolver, ForceEigen >::is_optimizer {true}
staticconstexpr

◆ is_rootfinder

template<typename Real, Integer N, typename DerivedSolver, bool ForceEigen = false>
bool Optimist::Optimizer::Optimizer< Real, N, DerivedSolver, ForceEigen >::is_rootfinder {false}
staticconstexpr

The documentation for this class was generated from the following file: