|
| | Newton () |
| std::string | name_impl () const |
| bool | solve_impl (FunctionWrapper function, JacobianWrapper jacobian, Vector const &x_ini, Vector &x_sol) |
| | RootFinder () |
| std::string | name () const |
| Integer | jacobian_evaluations () const |
| Integer | max_jacobian_evaluations () const |
| Integer | hessian_evaluations () const |
| Integer | max_hessian_evaluations () const |
| bool | solve (FunctionWrapper function, Vector const &x_ini, Vector &x_sol) |
| | SolverBase () |
| const InputType & | lower_bound () const |
| const InputType & | upper_bound () const |
| void | bounds (const InputType &t_lower_bound, const InputType &t_upper_bound) |
| constexpr Integer | input_dimension () const |
| constexpr Integer | output_dimension () const |
| Integer | function_evaluations () const |
| void | max_function_evaluations (Integer t_max_function_evaluations) |
| Integer | iterations () const |
| Integer | max_iterations () const |
| Real | alpha () const |
| Integer | relaxations () const |
| Integer | max_relaxations () const |
| Real | tolerance () const |
| void | verbose_mode (bool t_verbose) |
| void | enable_verbose_mode () |
| void | disable_verbose_mode () |
| void | damped_mode (bool t_damped) |
| void | enable_damped_mode () |
| void | disable_damped_mode () |
| std::string | task () const |
| bool | converged () const |
| const TraceType & | trace () const |
| std::ostream & | ostream () const |
| bool | solve (FunctionWrapper function, const InputType &x_ini, InputType &x_sol) |
| bool | rootfind (FunctionBase< Real, FunInDim, FunOutDim, DerivedFunction, ForceEigen &&FunOutDim==1 > const &function, const InputType &x_ini, InputType &x_sol) |
| bool | optimize (FunctionBase< Real, FunInDim, FunOutDim, DerivedFunction, ForceEigen &&FunOutDim==1 > const &function, const InputType &x_ini, InputType &x_sol) |
| std::string | name () const |
|
| using | InputType |
| using | OutputType |
| using | TraceType |
| using | FirstDerivativeType |
| using | SecondDerivativeType |
| using | FunctionWrapper |
| using | FirstDerivativeWrapper |
| using | SecondDerivativeWrapper |
| void | evaluate_jacobian (JacobianWrapper jacobian, const Vector &x, Matrix &out) |
| void | evaluate_hessian (HessianWrapper hessian, const Vector &x, Matrix &out) |
| Integer | first_derivative_evaluations () const |
| Integer | max_first_derivative_evaluations () const |
| Integer | second_derivative_evaluations () const |
| Integer | max_second_derivative_evaluations () const |
| void | reset () |
| void | evaluate_function (FunctionWrapper function, const InputType &x, OutputType &out) |
| void | evaluate_first_derivative (FirstDerivativeWrapper function, const InputType &x, FirstDerivativeType &out) |
| void | evaluate_second_derivative (SecondDerivativeWrapper function, const InputType &x, SecondDerivativeType &out) |
| void | store_trace (const InputType &x) |
| bool | damp (FunctionWrapper function, InputType const &x_old, InputType const &function_old, InputType const &step_old, InputType &x_new, InputType &function_new, InputType &step_new) |
| void | header () |
| void | bottom () |
| void | info (Real residuals, std::string const ¬es="-") |
| InputType | m_lower_bound |
| InputType | m_upper_bound |
| Integer | m_function_evaluations |
| Integer | m_first_derivative_evaluations |
| Integer | m_second_derivative_evaluations |
| Integer | m_max_function_evaluations |
| Integer | m_max_first_derivative_evaluations |
| Integer | m_max_second_derivative_evaluations |
| Integer | m_iterations |
| Integer | m_max_iterations |
| Real | m_alpha |
| Integer | m_relaxations |
| Integer | m_max_relaxations |
| Real | m_tolerance |
| bool | m_verbose |
| bool | m_damped |
| std::ostream * | m_ostream |
| std::string | m_task |
| bool | m_converged |
| TraceType | m_trace |
template<typename Real,
Integer N>
class Optimist::RootFinder::Newton< Real, N >
Newton's method
Newton's method, including its damped variant with an affine-invariant step, is based on the linearization of the function \(\mathbf{f}(\mathbf{x})\) around the current iterate \(\mathbf{x}_k\), which leads to the linear system
\[ \mathbf{Jf}_{\mathbf{x}}(\mathbf{x}_k) \mathbf{h}_k = -\mathbf{f}(\mathbf{x}_k) \text{.}
\]
The advancing step \(\mathbf{h}_k\) is then computed as
\[ \mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{h}_k \text{,}
\]
where \(\alpha_k\) is a damping coefficient that ensures affine-invariant criteria is satisfied.
- Template Parameters
-
| Real | Scalar number type. |
| N | Dimension of the root-finding problem. |