Optimist  0.0.0
A C++ library for optimization
Loading...
Searching...
No Matches
Optimist::RootFinder::Newton< Real, N > Class Template Reference

Class container for the Newton's method. More...

#include <Newton.hh>

Inherits Optimist::RootFinder::RootFinder< Real, N, Newton< Real, N >, true >.

Public Types

using Vector = typename RootFinder<Real, N, Newton<Real, N>, true>::Vector
using Matrix = typename RootFinder<Real, N, Newton<Real, N>, true>::Matrix
using FunctionWrapper = typename RootFinder<Real, N, Newton<Real, N>, true>::FunctionWrapper
using JacobianWrapper = typename RootFinder<Real, N, Newton<Real, N>, true>::JacobianWrapper
Public Types inherited from Optimist::RootFinder::RootFinder< Real, N, Newton< Real, N >, true >
using Vector
using Matrix
using Tensor
using FunctionWrapper
using JacobianWrapper
using HessianWrapper

Public Member Functions

 Newton ()
std::string name_impl () const
bool solve_impl (FunctionWrapper function, JacobianWrapper jacobian, Vector const &x_ini, Vector &x_sol)
Public Member Functions inherited from Optimist::RootFinder::RootFinder< Real, N, Newton< Real, N >, true >
 RootFinder ()
std::string name () const
Integer jacobian_evaluations () const
Integer max_jacobian_evaluations () const
Integer hessian_evaluations () const
Integer max_hessian_evaluations () const
bool solve (FunctionWrapper function, Vector const &x_ini, Vector &x_sol)
Public Member Functions inherited from Optimist::SolverBase< Real, N, N, Newton< Real, N >, ForceEigen >
 SolverBase ()
const InputTypelower_bound () const
const InputTypeupper_bound () const
void bounds (const InputType &t_lower_bound, const InputType &t_upper_bound)
constexpr Integer input_dimension () const
constexpr Integer output_dimension () const
Integer function_evaluations () const
void max_function_evaluations (Integer t_max_function_evaluations)
Integer iterations () const
Integer max_iterations () const
Real alpha () const
Integer relaxations () const
Integer max_relaxations () const
Real tolerance () const
void verbose_mode (bool t_verbose)
void enable_verbose_mode ()
void disable_verbose_mode ()
void damped_mode (bool t_damped)
void enable_damped_mode ()
void disable_damped_mode ()
std::string task () const
bool converged () const
const TraceTypetrace () const
std::ostream & ostream () const
bool solve (FunctionWrapper function, const InputType &x_ini, InputType &x_sol)
bool rootfind (FunctionBase< Real, FunInDim, FunOutDim, DerivedFunction, ForceEigen &&FunOutDim==1 > const &function, const InputType &x_ini, InputType &x_sol)
bool optimize (FunctionBase< Real, FunInDim, FunOutDim, DerivedFunction, ForceEigen &&FunOutDim==1 > const &function, const InputType &x_ini, InputType &x_sol)
std::string name () const

Static Public Attributes

static constexpr bool requires_function {true}
static constexpr bool requires_first_derivative {true}
static constexpr bool requires_second_derivative {false}
Static Public Attributes inherited from Optimist::RootFinder::RootFinder< Real, N, Newton< Real, N >, true >
static constexpr bool is_rootfinder
static constexpr bool is_optimizer
static constexpr bool requires_function
static constexpr bool requires_first_derivative
static constexpr bool requires_second_derivative

Private Attributes

Eigen::FullPivLU< Matrixm_lu

Additional Inherited Members

Protected Types inherited from Optimist::SolverBase< Real, N, N, Newton< Real, N >, ForceEigen >
using InputType
using OutputType
using TraceType
using FirstDerivativeType
using SecondDerivativeType
using FunctionWrapper
using FirstDerivativeWrapper
using SecondDerivativeWrapper
Protected Member Functions inherited from Optimist::RootFinder::RootFinder< Real, N, Newton< Real, N >, true >
void evaluate_jacobian (JacobianWrapper jacobian, const Vector &x, Matrix &out)
void evaluate_hessian (HessianWrapper hessian, const Vector &x, Matrix &out)
Protected Member Functions inherited from Optimist::SolverBase< Real, N, N, Newton< Real, N >, ForceEigen >
Integer first_derivative_evaluations () const
Integer max_first_derivative_evaluations () const
Integer second_derivative_evaluations () const
Integer max_second_derivative_evaluations () const
void reset ()
void evaluate_function (FunctionWrapper function, const InputType &x, OutputType &out)
void evaluate_first_derivative (FirstDerivativeWrapper function, const InputType &x, FirstDerivativeType &out)
void evaluate_second_derivative (SecondDerivativeWrapper function, const InputType &x, SecondDerivativeType &out)
void store_trace (const InputType &x)
bool damp (FunctionWrapper function, InputType const &x_old, InputType const &function_old, InputType const &step_old, InputType &x_new, InputType &function_new, InputType &step_new)
void header ()
void bottom ()
void info (Real residuals, std::string const &notes="-")
Protected Attributes inherited from Optimist::SolverBase< Real, N, N, Newton< Real, N >, ForceEigen >
InputType m_lower_bound
InputType m_upper_bound
Integer m_function_evaluations
Integer m_first_derivative_evaluations
Integer m_second_derivative_evaluations
Integer m_max_function_evaluations
Integer m_max_first_derivative_evaluations
Integer m_max_second_derivative_evaluations
Integer m_iterations
Integer m_max_iterations
Real m_alpha
Integer m_relaxations
Integer m_max_relaxations
Real m_tolerance
bool m_verbose
bool m_damped
std::ostream * m_ostream
std::string m_task
bool m_converged
TraceType m_trace

Detailed Description

template<typename Real, Integer N>
class Optimist::RootFinder::Newton< Real, N >

Newton's method

Newton's method, including its damped variant with an affine-invariant step, is based on the linearization of the function \(\mathbf{f}(\mathbf{x})\) around the current iterate \(\mathbf{x}_k\), which leads to the linear system

\[ \mathbf{Jf}_{\mathbf{x}}(\mathbf{x}_k) \mathbf{h}_k = -\mathbf{f}(\mathbf{x}_k) \text{.} \]

The advancing step \(\mathbf{h}_k\) is then computed as

\[ \mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{h}_k \text{,} \]

where \(\alpha_k\) is a damping coefficient that ensures affine-invariant criteria is satisfied.

Template Parameters
RealScalar number type.
NDimension of the root-finding problem.

Member Typedef Documentation

◆ FunctionWrapper

template<typename Real, Integer N>
using Optimist::RootFinder::Newton< Real, N >::FunctionWrapper = typename RootFinder<Real, N, Newton<Real, N>, true>::FunctionWrapper

◆ JacobianWrapper

template<typename Real, Integer N>
using Optimist::RootFinder::Newton< Real, N >::JacobianWrapper = typename RootFinder<Real, N, Newton<Real, N>, true>::JacobianWrapper

◆ Matrix

template<typename Real, Integer N>
using Optimist::RootFinder::Newton< Real, N >::Matrix = typename RootFinder<Real, N, Newton<Real, N>, true>::Matrix

◆ Vector

template<typename Real, Integer N>
using Optimist::RootFinder::Newton< Real, N >::Vector = typename RootFinder<Real, N, Newton<Real, N>, true>::Vector

Constructor & Destructor Documentation

◆ Newton()

template<typename Real, Integer N>
Optimist::RootFinder::Newton< Real, N >::Newton ( )
inline

Class constructor for the Newton solver.

Member Function Documentation

◆ name_impl()

template<typename Real, Integer N>
std::string Optimist::RootFinder::Newton< Real, N >::name_impl ( ) const
inline

Get the Newton solver name.

Returns
The Newton solver name.

◆ solve_impl()

template<typename Real, Integer N>
bool Optimist::RootFinder::Newton< Real, N >::solve_impl ( FunctionWrapper function,
JacobianWrapper jacobian,
Vector const & x_ini,
Vector & x_sol )
inline

Solve the nonlinear system of equations \( \mathbf{f}(\mathbf{x}) = 0 \), with \(\mathbf{f}: \mathbb{R}^n \rightarrow \mathbb{R}^n \).

Parameters
[in]functionFunction wrapper.
[in]jacobianJacobian wrapper.
[in]x_iniInitialization point.
[out]x_solSolution point.
Returns
The convergence boolean flag.

Member Data Documentation

◆ m_lu

template<typename Real, Integer N>
Eigen::FullPivLU<Matrix> Optimist::RootFinder::Newton< Real, N >::m_lu
private

LU decomposition.

◆ requires_first_derivative

template<typename Real, Integer N>
bool Optimist::RootFinder::Newton< Real, N >::requires_first_derivative {true}
staticconstexpr

◆ requires_function

template<typename Real, Integer N>
bool Optimist::RootFinder::Newton< Real, N >::requires_function {true}
staticconstexpr

◆ requires_second_derivative

template<typename Real, Integer N>
bool Optimist::RootFinder::Newton< Real, N >::requires_second_derivative {false}
staticconstexpr

Basic constants.


The documentation for this class was generated from the following file: