|
| | Cosh () |
| std::string | name_impl () const |
| void | evaluate_impl (Real x, Real &out) const |
| void | first_derivative_impl (Real x, Real &out) const |
| void | second_derivative_impl (Real x, Real &out) const |
| | Function () |
| std::string | name () const |
| void | evaluate (const InputVector &x, OutputVector &out) const |
| void | jacobian (const InputVector &x, Matrix &out) const |
| void | hessian (const InputVector &x, Tensor &out) const |
| | FunctionBase () |
| std::string | name () const |
| void | evaluate (const InputType &x, OutputType &out) const |
| void | first_derivative (const InputType &x, FirstDerivativeType &out) const |
| void | second_derivative (const InputType &x, SecondDerivativeType &out) const |
| constexpr Integer | input_dimension () const |
| constexpr Integer | output_dimension () const |
| const std::vector< InputType > & | solutions () const |
| const std::vector< InputType > & | guesses () const |
| const InputType & | solution (const Integer i) const |
| const InputType & | guess (const Integer i) const |
| bool | is_solution (const InputType &x, const Real tol=EPSILON_LOW) const |
template<typename Real>
class Optimist::TestSet::Cosh< Real >
Class container for the hyperbolic cosine function, which is defined as:
\[f(x) = \cosh(x) = \displaystyle\frac{e^x + e^{-x}}{2} \text{.}
\]
The function has a minimum at \(x = 0\), with \(f(x) = 1\). The initial guesses are generated on the range \(x \in \left[-10, 10\right]\).
- Template Parameters
-