|
| | Rosenbrock () |
| std::string | name_impl () const |
| bool | evaluate_impl (InputVector const &x, OutputVector &out) const |
| bool | first_derivative_impl (InputVector const &x, Matrix &out) const |
| bool | second_derivative_impl (InputVector const &, Tensor &out) const |
| | Function () |
| std::string | name () const |
| bool | evaluate (const InputVector &x, OutputVector &out) const |
| bool | jacobian (const InputVector &x, Matrix &out) const |
| bool | hessian (const InputVector &x, Tensor &out) const |
| | FunctionBase () |
| std::string | name () const |
| bool | evaluate (const InputType &x, OutputType &out) const |
| bool | first_derivative (const InputType &x, FirstDerivativeType &out) const |
| bool | second_derivative (const InputType &x, SecondDerivativeType &out) const |
| constexpr Integer | input_dimension () const |
| constexpr Integer | output_dimension () const |
| const std::vector< InputType > & | solutions () const |
| const std::vector< InputType > & | guesses () const |
| const InputType & | solution (Integer const i) const |
| const InputType & | guess (Integer const i) const |
| bool | is_solution (const InputType &x, Real const tol=EPSILON_LOW) const |
template<typename Real,
Integer N>
class Optimist::TestSet::Rosenbrock< Real, N >
Class container for the extended Rosenbrock function, which defined as:
\[\mathbf{f}(\mathbf{x}) = \begin{bmatrix}
10(x_2 - x_1^2) \\ 1 - x_1 \\
10(x_4 - x_3^2) \\ 1 - x_3 \\
\vdots \\
10(x_N - x_{N-1}^2) \\ 1 - x_{N-1}
\end{bmatrix} \text{.}
\]
The function has one solution at \(\mathbf{x} = [1, \dots 1]^\top\), with \(f(\mathbf{x}) = 0\). The initial guess is \(x_i = [-1.2, 1, -1.2, 1, \dots, -1.2, 1]^\top\).
- Template Parameters
-
| Real | Scalar number type. |
| N | Dimension of the function. |