|
| | Schaffer2 () |
| std::string | name_impl () const |
| bool | evaluate_impl (Vector const &x, Real &out) const |
| bool | first_derivative_impl (Vector const &x, RowVector &out) const |
| bool | second_derivative_impl (Vector const &x, Matrix &out) const |
| | Function () |
| std::string | name () const |
| bool | evaluate (const InputVector &x, OutputVector &out) const |
| bool | jacobian (const InputVector &x, Matrix &out) const |
| bool | hessian (const InputVector &x, Tensor &out) const |
| | FunctionBase () |
| std::string | name () const |
| bool | evaluate (const InputType &x, OutputType &out) const |
| bool | first_derivative (const InputType &x, FirstDerivativeType &out) const |
| bool | second_derivative (const InputType &x, SecondDerivativeType &out) const |
| constexpr Integer | input_dimension () const |
| constexpr Integer | output_dimension () const |
| const std::vector< InputType > & | solutions () const |
| const std::vector< InputType > & | guesses () const |
| const InputType & | solution (Integer const i) const |
| const InputType & | guess (Integer const i) const |
| bool | is_solution (const InputType &x, Real const tol=EPSILON_LOW) const |
template<typename Real>
class Optimist::TestSet::Schaffer2< Real >
Class container for the Schaffer2 function, which is defined as:
\[f(\mathbf{x}) = 0.5 + \displaystyle\frac{\sin^{2}(x_1^2 - x_2^2) - 0.5}{(1 + 0.001(x_1^2 + x_2^2))^2} \text{.}
\]
The function has global minima at \(\mathbf{x} = (0, 0)\), with \(f(\mathbf{x}) = 0\). The initial guesses are generated on the square \(x_i \in \left[-100, 100\right]\).
- Template Parameters
-