13#ifndef SANDALS_RUNGEKUTTA_HH
14#define SANDALS_RUNGEKUTTA_HH
48 template <
typename Real, Integer S, Integer N, Integer M>
51 using VectorX = Eigen::Vector<Real, Eigen::Dynamic>;
52 using MatrixX = Eigen::Matrix<Real, Eigen::Dynamic, Eigen::Dynamic>;
54 using MatrixK = Eigen::Matrix<Real, N, S>;
55 using MatrixJ = Eigen::Matrix<Real, N*S, N*S>;
56 using VectorP = Eigen::Matrix<Real, N+M, 1>;
57 using MatrixP = Eigen::Matrix<Real, N+M, N+M>;
58 using NewtonX = Optimist::RootFinder::Newton<Real, N>;
59 using NewtonK = Optimist::RootFinder::Newton<Real, N*S>;
73 using Time = Eigen::Vector<Real, Eigen::Dynamic>;
91 Eigen::FullPivLU<MatrixP>
m_lu;
136 bool is_erk()
const {
return this->m_tableau.
type == Type::ERK;}
142 bool is_irk()
const {
return this->m_tableau.
type == Type::IRK;}
172 std::string
name()
const {
return this->m_tableau.
name;}
239 this->m_system = std::make_shared<ImplicitWrapper<Real, N, M>>(
240 F, JF_x, JF_x_dot, h, Jh_x, in_domain);
262 this->m_system = std::make_shared<ImplicitWrapper<Real, N, M>>(
263 name, F, JF_x, JF_x_dot, h, Jh_x, in_domain);
281 this->m_system = std::make_shared<ExplicitWrapper<Real, N, M>>(
282 f, Jf_x, h, Jh_x, in_domain);
302 this->m_system = std::make_shared<ExplicitWrapper<Real, N, M>>(
303 name, f, Jf_x, h, Jh_x, in_domain);
323 this->m_system = std::make_shared<LinearWrapper<Real, N, M>>(
324 E,
A,
b, h, Jh_x, in_domain);
346 this->m_system = std::make_shared<LinearWrapper<Real, N, M>>(
347 name, E,
A,
b, h, Jh_x, in_domain);
369 this->m_system = std::make_shared<SemiExplicitWrapper<Real, N, M>>(
370 A, TA_x,
b, Jb_x, h, Jh_x, in_domain);
394 this->m_system = std::make_shared<SemiExplicitWrapper<Real, N, M>>(
395 name,
A, TA_x,
b, Jb_x, h, Jh_x, in_domain);
414 void absolute_tolerance(Real t_absolute_tolerance) {this->m_absolute_tolerance = t_absolute_tolerance;}
426 void relative_tolerance(Real t_relative_tolerance) {this->m_relative_tolerance = t_relative_tolerance;}
438 void safety_factor(Real t_safety_factor) {this->m_safety_factor = t_safety_factor;}
450 void min_safety_factor(Real t_min_safety_factor) {this->m_min_safety_factor = t_min_safety_factor;}
462 void max_safety_factor(Real t_max_safety_factor) {this->m_max_safety_factor = t_max_safety_factor;}
474 void min_step(Real t_min_step) {this->m_min_step = t_min_step;}
498 void adaptive(
bool t_adaptive) {this->m_adaptive = t_adaptive;}
521 this->m_verbose = t_verbose;
522 this->m_newtonX.verbose_mode(t_verbose);
523 this->m_newtonK.verbose_mode(t_verbose);
546 void reverse(
bool t_reverse) {this->m_reverse = t_reverse;}
569 {this->m_projection_tolerance = t_projection_tolerance;}
582 {this->m_max_projection_iterations = t_max_projection_iterations;}
594 void projection(
bool t_projection) {this->m_projection = t_projection;}
642 Real desired_error{this->m_absolute_tolerance + this->m_relative_tolerance *
643 std::max(x.array().abs().maxCoeff(), x_e.array().abs().maxCoeff())};
644 Real truncation_error{(x - x_e).array().abs().maxCoeff()};
645 return h_k * std::min(this->m_max_safety_factor, std::max(this->m_min_safety_factor,
646 this->m_safety_factor * std::pow(desired_error/truncation_error,
647 1.0/std::max(this->m_tableau.
order, this->m_tableau.order_e))));
655 std::ostringstream os;
657 <<
"Runge-Kutta method:\t" << this->
name() << std::endl
658 <<
"\t- order:\t" << this->
order() << std::endl
659 <<
"\t- stages:\t" << this->
stages() << std::endl
661 switch (this->
type()) {
662 case Type::ERK: os <<
"explicit";
break;
663 case Type::IRK: os <<
"implicit";
break;
664 case Type::DIRK: os <<
"diagonally implicit";
break;
668 <<
"\t- embedded:\t" << this->
is_embedded() << std::endl;
670 os <<
"\t- system:\t" << this->m_system->name() << std::endl;
672 os <<
"\t- system:\t" <<
"none" << std::endl;
713 for (
Integer i{0}; i < S; ++i) {
714 x_node = x_old + K(all, seqN(0, i)) * this->m_tableau.
A(i, seqN(0, i)).transpose();
715 if (!this->m_reverse) {
716 K.col(i) = h_old *
static_cast<Explicit<Real, N, M> const *
>(this->m_system.get())->
f(x_node, t_old + h_old*this->m_tableau.
c(i));
721 if (!K.allFinite()) {
return false;}
724 x_new = x_old + K * this->m_tableau.
b;
727 if (this->m_adaptive && this->m_tableau.
is_embedded) {
728 VectorN x_emb = x_old + K * this->m_tableau.
b_e;
758 VectorN x_node(x + K(all, seqN(0, s)) * this->m_tableau.
A(s, seqN(0, s)).transpose());
759 if (!this->m_reverse) {
760 fun = this->m_system->F(x_node, K.col(s)/h, t + h * this->m_tableau.c(s));
762 fun = this->m_system->F_reverse(x_node, K.col(s)/h, t + h * this->m_tableau.c(s));
801 VectorN x_node(x + K(all, seqN(0, s)) * this->m_tableau.
A(s, seqN(0, s)).transpose());
802 if (!this->m_reverse) {
803 jac = this->m_system->JF_x_dot(x_node, K.col(s)/h, t + h * this->m_tableau.c(s)) / h;
805 jac = this->m_system->JF_x_dot_reverse(x_node, K.col(s)/h, t + h * this->m_tableau.c(s)) / h;
826 VectorN K_ini(VectorN::Zero());
829 for (
Integer s{0}; s < S; ++s) {
830 if (this->m_newtonX.solve(
831 [
this, s, &K, &x_old, t_old, h_old](
VectorN const &K_fun,
VectorN &fun)
832 {K.col(s) = K_fun; this->erk_implicit_function(s, x_old, t_old, h_old, K, fun);},
833 [
this, s, &K, &x_old, t_old, h_old](
VectorN const &K_jac,
MatrixN &jac)
834 {K.col(s) = K_jac; this->erk_implicit_jacobian(s, x_old, t_old, h_old, K, jac);},
843 x_new = x_old + K * this->m_tableau.
b;
846 if (this->m_adaptive && this->m_tableau.
is_embedded) {
847 VectorN x_emb(x_old + K * this->m_tableau.
b_e);
889 MatrixK K_mat{K.reshaped(N, S)};
891 for (
Integer i{0}; i < S; ++i) {
892 x_node = x + K_mat * this->m_tableau.
A.row(i).transpose();
893 if (!this->m_reverse) {
894 fun_mat.col(i) = this->m_system->F(x_node, K_mat.col(i)/h, t + h * this->m_tableau.c(i));
896 fun_mat.col(i) = this->m_system->F_reverse(x_node, K_mat.col(i)/h, t + h * this->m_tableau.c(i));
899 fun = fun_mat.reshaped(N*S, 1);
946 MatrixK K_mat{K.reshaped(N, S)};
950 auto idx = seqN(0, N), jdx = seqN(0, N);
951 for (
Integer i{0}; i < S; ++i) {
952 t_node = t + h * this->m_tableau.
c(i);
953 x_node = x + K_mat * this->m_tableau.
A.row(i).transpose();
956 x_dot_node = K_mat.col(i) / h;
957 if (!this->m_reverse) {
958 JF_x = this->m_system->JF_x(x_node, x_dot_node, t_node);
959 JF_x_dot = this->m_system->JF_x_dot(x_node, x_dot_node, t_node);
961 JF_x = this->m_system->JF_x_reverse(x_node, x_dot_node, t_node);
962 JF_x_dot = this->m_system->JF_x_dot_reverse(x_node, x_dot_node, t_node);
967 for (
Integer j{0}; j < S; ++j) {
970 jac(idx, jdx) = this->m_tableau.
A(i,j) * JF_x + JF_x_dot / h;
972 jac(idx, jdx) = this->m_tableau.
A(i,j) * JF_x;
994 VectorK K_ini(VectorK::Zero());
997 if (!this->m_newtonK.solve(
999 {this->irk_function(x_old, t_old, h_old, K_fun, fun);},
1001 {this->irk_jacobian(x_old, t_old, h_old, K_jac, jac);},
1006 x_new = x_old + K.reshaped(N, S) * this->m_tableau.
b;
1009 if (this->m_adaptive && this->m_tableau.
is_embedded) {
1010 VectorN x_emb(x_old + K.reshaped(N, S) * this->m_tableau.b_e);
1049 VectorN x_node(x + K(all, seqN(0, n+1)) * this->m_tableau.
A(n, seqN(0, n+1)).transpose());
1050 if (!this->m_reverse) {
1051 fun = this->m_system->F(x_node, K.col(n)/h, t + h * this->m_tableau.c(n));
1053 fun = this->m_system->F_reverse(x_node, K.col(n)/h, t + h * this->m_tableau.c(n));
1094 Real t_node{t + h * this->m_tableau.
c(n)};
1095 VectorN x_node(x + K(all, seqN(0, n+1)) * this->m_tableau.
A(n, seqN(0, n+1)).transpose());
1096 VectorN x_dot_node(K.col(n)/h);
1097 if (!this->m_reverse) {
1098 jac = this->m_tableau.
A(n,n) * this->m_system->JF_x(x_node, x_dot_node, t_node) +
1099 this->m_system->JF_x_dot(x_node, x_dot_node, t_node) / h;
1101 jac = this->m_tableau.
A(n,n) * this->m_system->JF_x_reverse(x_node, x_dot_node, t_node) +
1102 this->m_system->JF_x_dot_reverse(x_node, x_dot_node, t_node) / h;
1123 VectorN K_ini(VectorN::Zero());
1126 for (
Integer n{0}; n < S; ++n) {
1127 if (this->m_newtonX.solve(
1128 [
this, n, &K, &x_old, t_old, h_old](
VectorN const &K_fun,
VectorN &fun)
1129 {K.col(n) = K_fun; this->dirk_function(n, x_old, t_old, h_old, K, fun);},
1130 [
this, n, &K, &x_old, t_old, h_old](
VectorN const &K_jac,
MatrixN &jac)
1131 {K.col(n) = K_jac; this->dirk_jacobian(n, x_old, t_old, h_old, K, jac);},
1140 x_new = x_old + K * this->m_tableau.
b;
1143 if (this->m_adaptive && this->m_tableau.
is_embedded) {
1144 VectorN x_emb(x_old + K * this->m_tableau.
b_e);
1163 #define CMD "Sandals::RungeKutta::step(...): "
1165 SANDALS_ASSERT(this->m_system->in_domain(x_old, t_old),
CMD "in " << this->m_tableau.name <<
1166 " solver, at t = " << t_old <<
", x = " << x_old.transpose() <<
", system out of domain.");
1168 if (this->
is_erk() && this->m_system->is_explicit()) {
1170 }
else if (this->
is_erk() && this->m_system->is_implicit()) {
1173 return this->
dirk_step(x_old, t_old, h_old, x_new, h_new);
1175 return this->
irk_step(x_old, t_old, h_old, x_new, h_new);
1196 #define CMD "Sandals::RungeKutta::advance(...): "
1200 h_old <<
", expected > 0.");
1203 if (!this->
step(x_old, t_old, h_old, x_new, h_new))
1206 Real t_tmp{t_old}, h_tmp{h_old / Real(2.0)};
1209 Integer max_k{this->m_max_substeps * this->m_max_substeps}, k{2};
1213 if (this->
step(x_tmp, t_tmp, h_tmp, x_new, h_new_tmp)) {
1219 if (k > 0 && k < max_k) {
1223 h_tmp = Real(2.0) * h_tmp;
1224 if (this->m_verbose) {
1226 ", integration succedded disable one substepping layer.");
1232 SANDALS_ASSERT(std::isfinite(x_tmp.maxCoeff()),
CMD "in " << this->m_tableau.name <<
1233 " solver, at t = " << t_tmp <<
", ||x||_inf = inf, computation interrupted.");
1240 t_tmp <<
", integration failed with h = " << h_tmp <<
", aborting.");
1245 "at t = " << t_tmp <<
", integration failed, adding substepping layer.");}
1260 if (this->m_projection) {
1262 if (this->
project(x_new, t_old + h_new, x_projected)) {
1263 x_new = x_projected;
1289 sol.
resize(t_mesh.size());
1292 sol.
t(0) = t_mesh(0);
1294 sol.
h.col(0) = this->m_system->h(ics, t_mesh(0));
1299 Real t_step{t_mesh(0)}, h_step{t_mesh(1) - t_mesh(0)}, h_tmp_step{h_step}, h_new_step;
1300 bool mesh_point_bool, saturation_bool;
1304 if (!this->
advance(sol.
x.col(
step), t_step, h_step, x_step, h_new_step)) {
return false;}
1312 if (this->m_adaptive && this->m_tableau.
is_embedded && !mesh_point_bool && saturation_bool) {
1313 h_tmp_step = h_new_step;
1314 h_step = t_mesh(
step+1) - t_step;
1316 h_step = h_new_step;
1320 if (!this->m_adaptive || mesh_point_bool) {
1323 h_step = h_tmp_step;
1326 sol.
t(
step) = t_step;
1327 sol.
x.col(
step) = x_step;
1328 sol.
h.col(
step) = this->m_system->h(x_step, t_step);
1331 if (std::abs(t_step - t_mesh(last)) <
SQRT_EPSILON) {
break;}
1351 #define CMD "Sandals::RungeKutta::adaptive_solve(...): "
1356 return this->
solve(t_mesh, ics, sol);
1357 }
else if (!this->m_adaptive) {
1359 return this->
solve(t_mesh, ics, sol);
1363 Real h_step{t_mesh(1) - t_mesh(0)}, h_new_step, scale{100.0};
1364 Real h_min{std::max(this->m_min_step, h_step/scale)}, h_max{scale*h_step};
1366 Integer safety_length{
static_cast<Integer>(std::ceil(std::abs(t_mesh(last) - t_mesh(0))/(2.0*h_min)))};
1367 sol.
resize(safety_length);
1369 sol.
resize(t_mesh.size());
1373 sol.
t(0) = t_mesh(0);
1375 sol.
h.col(0) = this->m_system->h(ics, t_mesh(0));
1386 if (this->m_adaptive && this->m_tableau.
is_embedded) {
1387 h_step = std::max(std::min(h_new_step, h_max), h_min);
1394 sol.
x.col(
step+1) = x_step;
1395 sol.
h.col(
step+1) = this->m_system->h(x_step, sol.
t(
step+1));
1398 if (sol.
t(
step+1) + h_step > t_mesh(last)) {
break;}
1423 #define CMD "Sandals::RungeKutta::project(...): "
1434 A.template block<N, N>(0, 0) = MatrixN::Identity();
1435 for (
Integer k{0}; k < this->m_max_projection_iterations; ++k) {
1445 h = this->m_system->h(x_projected, t);
1446 Jh_x = this->m_system->Jh_x(x_projected, t);
1449 if (h.norm() < this->m_projection_tolerance) {
return true;}
1452 A.template block<N, M>(0, N) = Jh_x.transpose();
1453 A.template block<M, N>(N, 0) = Jh_x;
1454 b.template head<N>() = x - x_projected;
1455 b.template tail<M>() = -h;
1458 this->m_lu.compute(
A);
1460 x_step = this->m_lu.solve(
b);
1463 if (x_step.norm() < this->m_projection_tolerance * this->m_projection_tolerance) {
return false;}
1466 x_projected.noalias() += x_step(Eigen::seqN(0, N));
1489 std::vector<Integer>
const & projected_invariants,
VectorN &x_projected)
const
1491 #define CMD "Sandals::RungeKutta::project_ics(...): "
1505 A.block(0, 0, X, X) = MatrixX::Identity(X+H, X+H);
1506 Eigen::FullPivLU<MatrixX> lu;
1507 for (
Integer k{0}; k < this->m_max_projection_iterations; ++k) {
1517 h = this->m_system->h(x_projected, t);
1518 Jh_x = this->m_system->Jh_x(x_projected, t);
1521 h = h(projected_invariants);
1522 Jh_x = Jh_x(projected_invariants, projected_equations);
1525 if (h.norm() < this->m_projection_tolerance) {
return true;}
1528 A.block(0, X, X, H) = Jh_x.transpose();
1529 A.block(X, 0, H, X) = Jh_x;
1530 b.head(X) = x(projected_equations) - x_projected(projected_equations);
1536 x_step = this->m_lu.solve(
b);
1539 if (x_step.norm() < this->m_projection_tolerance * this->m_projection_tolerance) {
return false;}
1542 x_projected(projected_equations).noalias() += x_step;
1564 #define CMD "Sandals::RungeKutta::estimate_order(...): "
1568 for (
Integer i{0}; i < static_cast<Integer>(t_mesh.size()); ++i) {
1572 CMD "expected the same initial time.");
1574 CMD "expected the same final time.");
1577 for (
Integer j{1}; j < static_cast<Integer>(t_mesh[i].size()); ++j) {
1579 CMD "expected a fixed step.");
1586 VectorX h_vec(t_mesh.size()), e_vec(t_mesh.size());
1587 for (
Integer i{0}; i < static_cast<Integer>(t_mesh.size()); ++i) {
1589 "the" << i <<
"-th time mesh.");
1590 sol_ana = sol(sol_num.
t);
1592 CMD "expected the same number of states in analytical solution.");
1594 CMD "expected the same number of steps in analytical solution.");
1595 h_vec(i) = std::abs(sol_num.
t(1) - sol_num.
t(0));
1596 e_vec(i) = (sol_ana - sol_num.
x).array().abs().maxCoeff();
1602 return ((
A.transpose() *
A).ldlt().solve(
A.transpose() *
b))(0);
#define SANDALS_BASIC_CONSTANTS(Real)
Definition Sandals.hh:70
#define SANDALS_ASSERT(COND, MSG)
Definition Sandals.hh:44
#define SANDALS_WARNING(MSG)
Definition Sandals.hh:53
Class container for the system of explicit ODEs.
Definition Explicit.hh:42
VectorF f_reverse(VectorF const &x, Real t) const
Definition Explicit.hh:160
virtual VectorF f(VectorF const &x, Real t) const =0
static const FunctionH DefaultH
Definition Explicit.hh:258
std::function< MatrixJH(VectorF const &, Real)> FunctionJH
Definition Explicit.hh:255
static const FunctionID DefaultID
Definition Explicit.hh:260
std::function< VectorF(VectorF const &, Real)> FunctionF
Definition Explicit.hh:252
std::function< MatrixJF(VectorF const &, Real)> FunctionJF
Definition Explicit.hh:253
std::function< VectorH(VectorF const &, Real)> FunctionH
Definition Explicit.hh:254
static const FunctionJH DefaultJH
Definition Explicit.hh:259
std::function< bool(VectorF const &, Real)> FunctionID
Definition Explicit.hh:256
Eigen::Matrix< Real, N, N > MatrixJF
Definition Implicit.hh:49
Eigen::Vector< Real, N > VectorF
Definition Implicit.hh:48
Eigen::Vector< Real, M > VectorH
Definition Implicit.hh:50
std::shared_ptr< Implicit< Real, N, M > > Pointer
Definition Implicit.hh:47
Eigen::Matrix< Real, M, N > MatrixJH
Definition Implicit.hh:51
std::function< bool(VectorF const &, Real)> FunctionID
Definition Implicit.hh:283
std::function< VectorH(VectorF const &, Real)> FunctionH
Definition Implicit.hh:281
std::function< VectorF(VectorF const &, VectorF const &, Real)> FunctionF
Definition Implicit.hh:279
std::function< MatrixJF(VectorF const &, VectorF const &, Real)> FunctionJF
Definition Implicit.hh:280
static const FunctionID DefaultID
Definition Implicit.hh:287
static const FunctionH DefaultH
Definition Implicit.hh:285
std::function< MatrixJH(VectorF const &, Real)> FunctionJH
Definition Implicit.hh:282
static const FunctionJH DefaultJH
Definition Implicit.hh:286
std::function< MatrixJH(VectorF const &, Real)> FunctionJH
Definition Linear.hh:219
std::function< VectorB(Real)> FunctionB
Definition Linear.hh:217
static const FunctionH DefaultH
Definition Linear.hh:222
std::function< bool(VectorF const &, Real)> FunctionID
Definition Linear.hh:220
static const FunctionJH DefaultJH
Definition Linear.hh:223
std::function< MatrixA(Real)> FunctionA
Definition Linear.hh:216
std::function< VectorH(VectorF const &, Real)> FunctionH
Definition Linear.hh:218
static const FunctionID DefaultID
Definition Linear.hh:224
std::function< MatrixE(Real)> FunctionE
Definition Linear.hh:215
Real & min_step()
Definition RungeKutta.hh:468
bool projection()
Definition RungeKutta.hh:588
bool adaptive_mode()
Definition RungeKutta.hh:492
bool is_erk() const
Definition RungeKutta.hh:136
typename Tableau< Real, S >::Matrix MatrixS
Definition RungeKutta.hh:61
void enable_reverse_mode()
Definition RungeKutta.hh:551
bool project_ics(VectorN const &x, Real t, std::vector< Integer > const &projected_equations, std::vector< Integer > const &projected_invariants, VectorN &x_projected) const
Definition RungeKutta.hh:1488
void projection(bool t_projection)
Definition RungeKutta.hh:594
typename Tableau< Real, S >::Vector VectorS
Definition RungeKutta.hh:60
Real & min_safety_factor()
Definition RungeKutta.hh:444
void semi_explicit_system(typename SemiExplicitWrapper< Real, N, M >::FunctionA A, typename SemiExplicitWrapper< Real, N, M >::FunctionTA TA_x, typename SemiExplicitWrapper< Real, N, M >::FunctionB b, typename SemiExplicitWrapper< Real, N, M >::FunctionJB Jb_x, typename SemiExplicitWrapper< Real, N, M >::FunctionH h=SemiExplicitWrapper< Real, N, M >::DefaultH, typename SemiExplicitWrapper< Real, N, M >::FunctionJH Jh_x=SemiExplicitWrapper< Real, N, M >::DefaultJH, typename SemiExplicitWrapper< Real, N, M >::FunctionID in_domain=SemiExplicitWrapper< Real, N, M >::DefaultID)
Definition RungeKutta.hh:360
bool reverse_mode()
Definition RungeKutta.hh:540
typename Implicit< Real, N, M >::MatrixJF MatrixN
Definition RungeKutta.hh:63
Real & safety_factor()
Definition RungeKutta.hh:432
Real m_absolute_tolerance
Definition RungeKutta.hh:80
Real m_min_safety_factor
Definition RungeKutta.hh:83
RungeKutta & operator=(RungeKutta const &)=delete
void irk_function(VectorN const &x, Real t, Real h, VectorK const &K, VectorK &fun) const
Definition RungeKutta.hh:886
typename Implicit< Real, N, M >::MatrixJH MatrixM
Definition RungeKutta.hh:65
Eigen::Matrix< Real, N+M, 1 > VectorP
Definition RungeKutta.hh:56
Tableau< Real, S > & tableau()
Definition RungeKutta.hh:154
System system()
Definition RungeKutta.hh:214
VectorS b_embedded() const
Definition RungeKutta.hh:202
RungeKutta(const RungeKutta &)=delete
bool step(VectorN const &x_old, Real t_old, Real h_old, VectorN &x_new, Real &h_new)
Definition RungeKutta.hh:1161
typename Implicit< Real, N, M >::Pointer System
Definition RungeKutta.hh:71
void enable_projection()
Definition RungeKutta.hh:599
RungeKutta(Tableau< Real, S > const &t_tableau, System t_system)
Definition RungeKutta.hh:121
Real m_relative_tolerance
Definition RungeKutta.hh:81
void max_safety_factor(Real t_max_safety_factor)
Definition RungeKutta.hh:462
Integer & max_substeps()
Definition RungeKutta.hh:480
typename Implicit< Real, N, M >::VectorF VectorN
Definition RungeKutta.hh:62
void linear_system(std::string name, typename LinearWrapper< Real, N, M >::FunctionE E, typename LinearWrapper< Real, N, M >::FunctionA A, typename LinearWrapper< Real, N, M >::FunctionB b, typename LinearWrapper< Real, N, M >::FunctionH h=LinearWrapper< Real, N, M >::DefaultH, typename LinearWrapper< Real, N, M >::FunctionJH Jh_x=LinearWrapper< Real, N, M >::DefaultJH, typename LinearWrapper< Real, N, M >::FunctionID in_domain=LinearWrapper< Real, N, M >::DefaultID)
Definition RungeKutta.hh:337
RungeKutta(Tableau< Real, S > const &t_tableau)
Definition RungeKutta.hh:111
Eigen::Matrix< Real, N+M, N+M > MatrixP
Definition RungeKutta.hh:57
void adaptive(bool t_adaptive)
Definition RungeKutta.hh:498
Integer order() const
Definition RungeKutta.hh:178
void dirk_function(Integer n, VectorN const &x, Real t, Real h, MatrixK const &K, VectorN &fun) const
Definition RungeKutta.hh:1045
bool solve(VectorX const &t_mesh, VectorN const &ics, Solution< Real, N, M > &sol)
Definition RungeKutta.hh:1284
void max_projection_iterations(Integer t_max_projection_iterations)
Definition RungeKutta.hh:581
Eigen::Matrix< Real, N *S, N *S > MatrixJ
Definition RungeKutta.hh:55
VectorS b() const
Definition RungeKutta.hh:196
typename Tableau< Real, S >::Type Type
Definition RungeKutta.hh:72
void absolute_tolerance(Real t_absolute_tolerance)
Definition RungeKutta.hh:414
NewtonX m_newtonX
Definition RungeKutta.hh:76
bool is_dirk() const
Definition RungeKutta.hh:148
VectorS c() const
Definition RungeKutta.hh:208
void reverse(bool t_reverse)
Definition RungeKutta.hh:546
bool m_reverse
Definition RungeKutta.hh:89
bool m_adaptive
Definition RungeKutta.hh:87
Eigen::Vector< Real, Eigen::Dynamic > VectorX
Definition RungeKutta.hh:51
std::string name() const
Definition RungeKutta.hh:172
Real m_min_step
Definition RungeKutta.hh:85
void safety_factor(Real t_safety_factor)
Definition RungeKutta.hh:438
void implicit_system(typename ImplicitWrapper< Real, N, M >::FunctionF F, typename ImplicitWrapper< Real, N, M >::FunctionJF JF_x, typename ImplicitWrapper< Real, N, M >::FunctionJF JF_x_dot, typename ImplicitWrapper< Real, N, M >::FunctionH h=ImplicitWrapper< Real, N, M >::DefaultH, typename ImplicitWrapper< Real, N, M >::FunctionJH Jh_x=ImplicitWrapper< Real, N, M >::DefaultJH, typename ImplicitWrapper< Real, N, M >::FunctionID in_domain=ImplicitWrapper< Real, N, M >::DefaultID)
Definition RungeKutta.hh:231
void semi_explicit_system(std::string name, typename SemiExplicitWrapper< Real, N, M >::FunctionA A, typename SemiExplicitWrapper< Real, N, M >::FunctionTA TA_x, typename SemiExplicitWrapper< Real, N, M >::FunctionB b, typename SemiExplicitWrapper< Real, N, M >::FunctionJB Jb_x, typename SemiExplicitWrapper< Real, N, M >::FunctionH h=SemiExplicitWrapper< Real, N, M >::DefaultH, typename SemiExplicitWrapper< Real, N, M >::FunctionJH Jh_x=SemiExplicitWrapper< Real, N, M >::DefaultJH, typename SemiExplicitWrapper< Real, N, M >::FunctionID in_domain=SemiExplicitWrapper< Real, N, M >::DefaultID)
Definition RungeKutta.hh:384
void enable_adaptive_mode()
Definition RungeKutta.hh:503
Real projection_tolerance()
Definition RungeKutta.hh:562
bool project(VectorN const &x, Real t, VectorN &x_projected)
Definition RungeKutta.hh:1421
bool dirk_step(VectorN const &x_old, Real t_old, Real h_old, VectorN &x_new, Real &h_new)
Definition RungeKutta.hh:1119
void dirk_jacobian(Integer n, VectorN const &x, Real t, Real h, MatrixK const &K, MatrixN &jac) const
Definition RungeKutta.hh:1090
void verbose_mode(bool t_verbose)
Definition RungeKutta.hh:520
Real relative_tolerance()
Definition RungeKutta.hh:420
bool verbose_mode()
Definition RungeKutta.hh:514
void linear_system(typename LinearWrapper< Real, N, M >::FunctionE E, typename LinearWrapper< Real, N, M >::FunctionA A, typename LinearWrapper< Real, N, M >::FunctionB b, typename LinearWrapper< Real, N, M >::FunctionH h=LinearWrapper< Real, N, M >::DefaultH, typename LinearWrapper< Real, N, M >::FunctionJH Jh_x=LinearWrapper< Real, N, M >::DefaultJH, typename LinearWrapper< Real, N, M >::FunctionID in_domain=LinearWrapper< Real, N, M >::DefaultID)
Definition RungeKutta.hh:315
const Real SQRT_EPSILON
Definition RungeKutta.hh:69
Real estimate_order(std::vector< VectorX > const &t_mesh, VectorN const &ics, std::function< MatrixX(VectorX)> &sol)
Definition RungeKutta.hh:1560
void irk_jacobian(VectorN const &x, Real t, Real h, VectorK const &K, MatrixJ &jac) const
Definition RungeKutta.hh:938
void explicit_system(typename ExplicitWrapper< Real, N, M >::FunctionF f, typename ExplicitWrapper< Real, N, M >::FunctionJF Jf_x, typename ExplicitWrapper< Real, N, M >::FunctionH h=ExplicitWrapper< Real, N, M >::DefaultH, typename ExplicitWrapper< Real, N, M >::FunctionJH Jh_x=ExplicitWrapper< Real, N, M >::DefaultJH, typename ExplicitWrapper< Real, N, M >::FunctionID in_domain=ExplicitWrapper< Real, N, M >::DefaultID)
Definition RungeKutta.hh:274
Eigen::FullPivLU< MatrixP > m_lu
Definition RungeKutta.hh:91
void min_step(Real t_min_step)
Definition RungeKutta.hh:474
System m_system
Definition RungeKutta.hh:79
Tableau< Real, S > m_tableau
Definition RungeKutta.hh:78
Eigen::Matrix< Real, N, S > MatrixK
Definition RungeKutta.hh:54
Integer stages() const
Definition RungeKutta.hh:166
void max_substeps(Integer t_max_substeps)
Definition RungeKutta.hh:486
void enable_verbose_mode()
Definition RungeKutta.hh:529
Integer & max_projection_iterations()
Definition RungeKutta.hh:575
bool is_irk() const
Definition RungeKutta.hh:142
Optimist::RootFinder::Newton< Real, N > NewtonX
Definition RungeKutta.hh:58
bool erk_explicit_step(VectorN const &x_old, Real t_old, Real h_old, VectorN &x_new, Real &h_new) const
Definition RungeKutta.hh:705
void projection_tolerance(Real t_projection_tolerance)
Definition RungeKutta.hh:568
Real m_projection_tolerance
Definition RungeKutta.hh:92
bool erk_implicit_step(VectorN const &x_old, Real t_old, Real h_old, VectorN &x_new, Real &h_new)
Definition RungeKutta.hh:822
bool advance(VectorN const &x_old, Real t_old, Real h_old, VectorN &x_new, Real &h_new)
Definition RungeKutta.hh:1194
void system(System t_system)
Definition RungeKutta.hh:220
void disable_adaptive_mode()
Definition RungeKutta.hh:508
Tableau< Real, S > const & tableau() const
Definition RungeKutta.hh:160
Real m_max_safety_factor
Definition RungeKutta.hh:84
void erk_implicit_function(Integer s, VectorN const &x, Real t, Real h, MatrixK const &K, VectorN &fun) const
Definition RungeKutta.hh:754
bool m_verbose
Definition RungeKutta.hh:88
Real m_safety_factor
Definition RungeKutta.hh:82
void disable_reverse_mode()
Definition RungeKutta.hh:556
Eigen::Vector< Real, N *S > VectorK
Definition RungeKutta.hh:53
void info(std::ostream &os)
Definition RungeKutta.hh:681
void relative_tolerance(Real t_relative_tolerance)
Definition RungeKutta.hh:426
void min_safety_factor(Real t_min_safety_factor)
Definition RungeKutta.hh:450
Type type() const
Definition RungeKutta.hh:130
void disable_projection()
Definition RungeKutta.hh:604
Eigen::Matrix< Real, Eigen::Dynamic, Eigen::Dynamic > MatrixX
Definition RungeKutta.hh:52
bool adaptive_solve(VectorX const &t_mesh, VectorN const &ics, Solution< Real, N, M > &sol)
Definition RungeKutta.hh:1346
Eigen::Vector< Real, Eigen::Dynamic > Time
Definition RungeKutta.hh:73
void disable_verbose_mode()
Definition RungeKutta.hh:534
Integer m_max_substeps
Definition RungeKutta.hh:86
bool is_embedded() const
Definition RungeKutta.hh:184
bool irk_step(VectorN const &x_old, Real t_old, Real h_old, VectorN &x_new, Real &h_new)
Definition RungeKutta.hh:991
std::string info() const
Definition RungeKutta.hh:654
Real estimate_step(VectorN const &x, VectorN const &x_e, Real h_k) const
Definition RungeKutta.hh:640
void explicit_system(std::string name, typename ExplicitWrapper< Real, N, M >::FunctionF f, typename ExplicitWrapper< Real, N, M >::FunctionJF Jf_x, typename ExplicitWrapper< Real, N, M >::FunctionH h=ExplicitWrapper< Real, N, M >::DefaultH, typename ExplicitWrapper< Real, N, M >::FunctionJH Jh_x=ExplicitWrapper< Real, N, M >::DefaultJH, typename ExplicitWrapper< Real, N, M >::FunctionID in_domain=ExplicitWrapper< Real, N, M >::DefaultID)
Definition RungeKutta.hh:294
bool has_system()
Definition RungeKutta.hh:402
void erk_implicit_jacobian(Integer s, VectorN const &x, Real t, Real h, MatrixK const &K, MatrixN &jac) const
Definition RungeKutta.hh:797
typename Implicit< Real, N, M >::VectorH VectorM
Definition RungeKutta.hh:64
MatrixS A() const
Definition RungeKutta.hh:190
Real absolute_tolerance()
Definition RungeKutta.hh:408
Optimist::RootFinder::Newton< Real, N *S > NewtonK
Definition RungeKutta.hh:59
Integer m_max_projection_iterations
Definition RungeKutta.hh:93
NewtonK m_newtonK
Definition RungeKutta.hh:77
void implicit_system(std::string name, typename ImplicitWrapper< Real, N, M >::FunctionF F, typename ImplicitWrapper< Real, N, M >::FunctionJF JF_x, typename ImplicitWrapper< Real, N, M >::FunctionJF JF_x_dot, typename ImplicitWrapper< Real, N, M >::FunctionH h=ImplicitWrapper< Real, N, M >::DefaultH, typename ImplicitWrapper< Real, N, M >::FunctionJH Jh_x=ImplicitWrapper< Real, N, M >::DefaultJH, typename ImplicitWrapper< Real, N, M >::FunctionID in_domain=ImplicitWrapper< Real, N, M >::DefaultID)
Definition RungeKutta.hh:253
Real & max_safety_factor()
Definition RungeKutta.hh:456
bool m_projection
Definition RungeKutta.hh:94
std::function< VectorH(VectorF const &, Real)> FunctionH
Definition SemiExplicit.hh:278
static const FunctionH DefaultH
Definition SemiExplicit.hh:282
std::function< VectorB(VectorF const &, Real)> FunctionB
Definition SemiExplicit.hh:276
static const FunctionJH DefaultJH
Definition SemiExplicit.hh:283
std::function< MatrixA(VectorF const &, Real)> FunctionA
Definition SemiExplicit.hh:274
std::function< MatrixJB(VectorF const &, Real)> FunctionJB
Definition SemiExplicit.hh:277
static const FunctionID DefaultID
Definition SemiExplicit.hh:284
std::function< MatrixJH(VectorF const &, Real)> FunctionJH
Definition SemiExplicit.hh:279
std::function< bool(VectorF const &, Real)> FunctionID
Definition SemiExplicit.hh:280
std::function< TensorTA(VectorF const &, Real)> FunctionTA
Definition SemiExplicit.hh:275
The namespace for the Sandals library.
Definition Sandals.hh:89
SANDALS_DEFAULT_INTEGER_TYPE Integer
The Integer type as used for the API.
Definition Sandals.hh:97
Class container for the numerical solution of a system of ODEs/DAEs.
Definition Solution.hh:60
MatrixN x
Definition Solution.hh:66
Integer size() const
Definition Solution.hh:124
void resize(Integer size)
Definition Solution.hh:85
Vector t
Definition Solution.hh:65
void conservative_resize(Integer size)
Definition Solution.hh:95
MatrixM h
Definition Solution.hh:67
Struct container for the Butcher tableau of a Runge-Kutta method.
Definition Tableau.hh:38
enum class type :Integer {ERK=0, IRK=1, DIRK=2} Type
Definition Tableau.hh:42
Type type
Definition Tableau.hh:47
Integer order
Definition Tableau.hh:48
std::string name
Definition Tableau.hh:46
Vector b_e
Definition Tableau.hh:52
Eigen::Matrix< Real, S, S > Matrix
Definition Tableau.hh:44
Matrix A
Definition Tableau.hh:50
Eigen::Vector< Real, S > Vector
Definition Tableau.hh:43
Vector c
Definition Tableau.hh:53
Vector b
Definition Tableau.hh:51
bool is_embedded
Definition Tableau.hh:54