13#ifndef SANDALS_RUNGEKUTTA_HH
14#define SANDALS_RUNGEKUTTA_HH
50 template <
typename Real, Integer S, Integer N, Integer M = 0>
55 using VectorX = Eigen::Vector<Real, Eigen::Dynamic>;
59 using MatrixX = Eigen::Matrix<Real, Eigen::Dynamic, Eigen::Dynamic>;
61 using MatrixK = Eigen::Matrix<Real, N, S>;
63 using MatrixJ = Eigen::Matrix<Real, N*S, N*S>;
64 using VectorP = Eigen::Matrix<Real, N+M, 1>;
65 using MatrixP = Eigen::Matrix<Real, N+M, N+M>;
66 using NewtonX = Optimist::RootFinder::Newton<Real, N>;
67 using NewtonK = Optimist::RootFinder::Newton<Real, N*S>;
82 using Time = Eigen::Vector<Real, Eigen::Dynamic>;
87 mutable Eigen::FullPivLU<MatrixP>
m_lu;
147 bool is_erk()
const {
return this->m_tableau.
type == Type::ERK;}
153 bool is_irk()
const {
return this->m_tableau.
type == Type::IRK;}
183 std::string
name()
const {
return this->m_tableau.
name;}
250 this->m_system = std::make_shared<ImplicitWrapper<Real, N, M>>(F, JF_x, JF_x_dot, h, Jh_x, in_domain);
272 this->m_system = std::make_shared<ImplicitWrapper<Real, N, M>>(
name, F, JF_x, JF_x_dot, h, Jh_x, in_domain);
290 this->m_system = std::make_shared<ExplicitWrapper<Real, N, M>>(f, Jf_x, h, Jh_x, in_domain);
310 this->m_system = std::make_shared<ExplicitWrapper<Real, N, M>>(
name, f, Jf_x, h, Jh_x, in_domain);
330 this->m_system = std::make_shared<LinearWrapper<Real, N, M>>(E,
A,
b, h, Jh_x, in_domain);
352 this->m_system = std::make_shared<LinearWrapper<Real, N, M>>(
name, E,
A,
b, h, Jh_x, in_domain);
374 this->m_system = std::make_shared<SemiExplicitWrapper<Real, N, M>>(
A, TA_x,
b, Jb_x, h, Jh_x, in_domain);
398 this->m_system = std::make_shared<SemiExplicitWrapper<Real, N, M>>(
name,
A, TA_x,
b, Jb_x, h, Jh_x, in_domain);
417 void absolute_tolerance(Real
const t_absolute_tolerance) {this->m_absolute_tolerance = t_absolute_tolerance;}
429 void relative_tolerance(Real
const t_relative_tolerance) {this->m_relative_tolerance = t_relative_tolerance;}
441 void safety_factor(Real
const t_safety_factor) {this->m_safety_factor = t_safety_factor;}
453 void min_safety_factor(Real
const t_min_safety_factor) {this->m_min_safety_factor = t_min_safety_factor;}
465 void max_safety_factor(Real
const t_max_safety_factor) {this->m_max_safety_factor = t_max_safety_factor;}
477 void min_step(Real
const t_min_step) {this->m_min_step = t_min_step;}
501 void adaptive(
bool t_adaptive) {this->m_adaptive = t_adaptive;}
524 this->m_verbose = t_verbose;
525 this->m_newtonX.verbose_mode(t_verbose);
526 this->m_newtonK.verbose_mode(t_verbose);
549 void reverse(
bool t_reverse) {this->m_reverse = t_reverse;}
584 {this->m_projection_tolerance = t_projection_tolerance;}
597 {this->m_max_projection_iterations = t_max_projection_iterations;}
609 void projection(
bool t_projection) {this->m_projection = t_projection;}
657 Real desired_error{this->m_absolute_tolerance + this->m_relative_tolerance *
658 std::max(x.array().abs().maxCoeff(), x_e.array().abs().maxCoeff())};
659 Real truncation_error{(x - x_e).array().abs().maxCoeff()};
660 return h_k * std::min(this->m_max_safety_factor, std::max(this->m_min_safety_factor,
661 this->m_safety_factor * std::pow(desired_error/truncation_error,
662 1.0/std::max(this->m_tableau.
order, this->m_tableau.order_e))));
671 std::ostringstream os;
673 <<
"Runge-Kutta method:\t" << this->
name() << std::endl
674 <<
"\t- order:\t" << this->
order() << std::endl
675 <<
"\t- stages:\t" << this->
stages() << std::endl
677 switch (this->
type()) {
678 case Type::ERK: os <<
"explicit";
break;
679 case Type::IRK: os <<
"implicit";
break;
680 case Type::DIRK: os <<
"diagonally implicit";
break;
684 <<
"\t- embedded:\t" << this->
is_embedded() << std::endl;
686 os <<
"\t- system:\t" << this->m_system->name() << std::endl;
688 os <<
"\t- system:\t" <<
"none" << std::endl;
723 Real & h_new,
MatrixK & K)
const
730 for (
Integer i{0}; i < S; ++i) {
731 x_node = x_old + K(all, seqN(0, i)) * this->m_tableau.
A(i, seqN(0, i)).transpose();
732 if (!this->m_reverse) {
733 K.col(i) = h_old *
static_cast<Explicit<Real, N, M> const *
>(this->m_system.get())->
f(x_node, t_old + h_old*this->m_tableau.
c(i));
738 if (!K.allFinite()) {
return false;}
741 x_new = x_old + K * this->m_tableau.
b;
744 if (this->m_adaptive && this->m_tableau.
is_embedded) {
745 VectorN x_emb = x_old + K * this->m_tableau.
b_e;
773 std::array<MatrixN, S> dK_dx;
774 for (
Integer i{0}; i < S; ++i) {
776 x_node = x + K(all, seqN(0, i)) * this->m_tableau.
A(i, seqN(0, i)).transpose();
779 if (!this->m_reverse) {
787 for (
Integer j{0}; j < i; ++j) {
788 dK_dx[i] += h * Jf_x * dK_dx[j] * this->m_tableau.
A(i, j);
792 if (!dK_dx[i].allFinite()) {
return false;}
797 for (
Integer i{0}; i < S; ++i) {Jx += h * dK_dx[i] * this->m_tableau.
b(i);}
827 VectorN x_node(x + K(all, seqN(0, s)) * this->m_tableau.
A(s, seqN(0, s)).transpose());
828 if (!this->m_reverse) {
829 fun = this->m_system->F(x_node, K.col(s)/h, t + h * this->m_tableau.c(s));
831 fun = this->m_system->F_reverse(x_node, K.col(s)/h, t + h * this->m_tableau.c(s));
871 VectorN x_node(x + K(all, seqN(0, s)) * this->m_tableau.
A(s, seqN(0, s)).transpose());
872 if (!this->m_reverse) {
873 jac = this->m_system->JF_x_dot(x_node, K.col(s)/h, t + h * this->m_tableau.c(s)) / h;
875 jac = this->m_system->JF_x_dot_reverse(x_node, K.col(s)/h, t + h * this->m_tableau.c(s)) / h;
894 Real & h_new,
MatrixK & K)
const
897 VectorN K_ini(VectorN::Zero());
900 for (
Integer s{0}; s < S; ++s) {
901 if (this->m_newtonX.solve(
902 [
this, s, &K, &x_old, t_old, h_old](
VectorN const & K_fun,
VectorN & fun)
903 {K.col(s) = K_fun; this->erk_implicit_function(s, x_old, t_old, h_old, K, fun);},
904 [
this, s, &K, &x_old, t_old, h_old](
VectorN const & K_jac,
MatrixN & jac)
905 {K.col(s) = K_jac; this->erk_implicit_jacobian(s, x_old, t_old, h_old, K, jac);},
914 x_new = x_old + K * this->m_tableau.
b;
917 if (this->m_adaptive && this->m_tableau.
is_embedded) {
918 VectorN x_emb(x_old + K * this->m_tableau.
b_e);
946 std::array<MatrixN, S> dK_dx;
947 for (
Integer i{0}; i < S; ++i) {
949 x_node = x + K(all, seqN(0, i)) * this->m_tableau.
A(i, seqN(0, i)).transpose();
950 x_dot_node = K.col(i) / h;
953 if (!this->m_reverse) {
954 JF_x = this->m_system->JF_x(x_node, x_dot_node, t + h*this->m_tableau.
c(i));
955 JF_x_dot = this->m_system->JF_x_dot(x_node, x_dot_node, t + h*this->m_tableau.
c(i));
957 JF_x = this->m_system->JF_x_reverse(x_node, x_dot_node, t + h*this->m_tableau.
c(i));
958 JF_x_dot = this->m_system->JF_x_dot_reverse(x_node, x_dot_node, t + h*this->m_tableau.
c(i));
962 jac = MatrixN::Identity();
963 for (
Integer j{0}; j < i; ++j) {
964 jac += dK_dx[j] * this->m_tableau.
A(i, j);
969 dK_dx[i] = -(JF_x * jac).lu().solve(JF_x_dot / h);
972 if (!dK_dx[i].allFinite()) {
return false;}
977 for (
Integer i{0}; i < S; ++i) {Jx += h * dK_dx[i] * this->m_tableau.
b(i);}
1018 MatrixK K_mat{K.reshaped(N, S)};
1020 for (
Integer i{0}; i < S; ++i) {
1021 x_node = x + K_mat * this->m_tableau.
A.row(i).transpose();
1022 if (!this->m_reverse) {
1023 fun_mat.col(i) = this->m_system->F(x_node, K_mat.col(i)/h, t + h * this->m_tableau.c(i));
1025 fun_mat.col(i) = this->m_system->F_reverse(x_node, K_mat.col(i)/h, t + h * this->m_tableau.c(i));
1028 fun = fun_mat.reshaped(N*S, 1);
1075 MatrixK K_mat{K.reshaped(N, S)};
1079 auto idx = seqN(0, N), jdx = seqN(0, N);
1080 for (
Integer i{0}; i < S; ++i) {
1081 t_node = t + h * this->m_tableau.
c(i);
1082 x_node = x + K_mat * this->m_tableau.
A.row(i).transpose();
1085 x_dot_node = K_mat.col(i) / h;
1086 if (!this->m_reverse) {
1087 JF_x = this->m_system->JF_x(x_node, x_dot_node, t_node);
1088 JF_x_dot = this->m_system->JF_x_dot(x_node, x_dot_node, t_node);
1090 JF_x = this->m_system->JF_x_reverse(x_node, x_dot_node, t_node);
1091 JF_x_dot = this->m_system->JF_x_dot_reverse(x_node, x_dot_node, t_node);
1096 for (
Integer j{0}; j < S; ++j) {
1099 jac(idx, jdx) = this->m_tableau.
A(i,j) * JF_x + JF_x_dot / h;
1101 jac(idx, jdx) = this->m_tableau.
A(i,j) * JF_x;
1122 Real & h_new,
MatrixK & K)
const
1125 VectorK K_ini(VectorK::Zero());
1128 if (!this->m_newtonK.solve(
1129 [
this, &x_old, t_old, h_old](
VectorK const & K_fun,
VectorK & fun)
1130 {this->irk_function(x_old, t_old, h_old, K_fun, fun);},
1131 [
this, &x_old, t_old, h_old](
VectorK const & K_jac,
MatrixJ & jac)
1132 {this->irk_jacobian(x_old, t_old, h_old, K_jac, jac);},
1137 K = K_vec.reshaped(N, S);
1138 if (!K.allFinite()) {
return false;}
1141 x_new = x_old + K * this->m_tableau.
b;
1144 if (this->m_adaptive && this->m_tableau.
is_embedded) {
1145 VectorN x_emb(x_old + K * this->m_tableau.
b_e);
1173 Eigen::Matrix<Real, N*S, N*S>
A;
1174 Eigen::Matrix<Real, N*S, N>
b;
1175 std::array<MatrixN, S> dK_dx;
1176 for (
Integer i{0}; i < S; ++i) {
1178 x_node = x + K * this->m_tableau.
A.row(i).transpose();
1179 x_dot_node = K.col(i) / h;
1182 if (!this->m_reverse) {
1183 JF_x = this->m_system->JF_x(x_node, x_dot_node, t + h*this->m_tableau.
c(i));
1184 JF_x_dot = this->m_system->JF_x_dot(x_node, x_dot_node, t + h*this->m_tableau.
c(i));
1186 JF_x = this->m_system->JF_x_reverse(x_node, x_dot_node, t + h*this->m_tableau.
c(i));
1187 JF_x_dot = this->m_system->JF_x_dot_reverse(x_node, x_dot_node, t + h*this->m_tableau.
c(i));
1191 A.block(i*N, i*N, N, N) = JF_x_dot;
1192 for (
Integer j{0}; j < S; ++j) {
1193 A.block(i*N, j*N, N, N) += h * this->m_tableau.
A(i, j) * JF_x;
1195 b.block(i*N, 0, N, N) = -h * JF_x;
1198 if (!JF_x.allFinite() || !JF_x_dot.allFinite()) {
return false;}
1202 Eigen::Matrix<Real, N*S, N> dK_dx_mat(
A.lu().solve(
b));
1203 for (
Integer i{0}; i < S; ++i) {
1204 dK_dx[i] = dK_dx_mat.block(i*N, 0, N, N);
1205 if (!dK_dx[i].allFinite()) {
return false;}
1210 for (
Integer i{0}; i < S; ++i) {Jx += h * dK_dx[i] * this->m_tableau.
b(i);}
1249 VectorN x_node(x + K(all, seqN(0, n+1)) * this->m_tableau.
A(n, seqN(0, n+1)).transpose());
1250 if (!this->m_reverse) {
1251 fun = this->m_system->F(x_node, K.col(n)/h, t + h * this->m_tableau.c(n));
1253 fun = this->m_system->F_reverse(x_node, K.col(n)/h, t + h * this->m_tableau.c(n));
1295 Real t_node{t + h * this->m_tableau.
c(n)};
1296 VectorN x_node(x + K(all, seqN(0, n+1)) * this->m_tableau.
A(n, seqN(0, n+1)).transpose());
1297 VectorN x_dot_node(K.col(n)/h);
1298 if (!this->m_reverse) {
1299 jac = this->m_tableau.
A(n,n) * this->m_system->JF_x(x_node, x_dot_node, t_node) +
1300 this->m_system->JF_x_dot(x_node, x_dot_node, t_node) / h;
1302 jac = this->m_tableau.
A(n,n) * this->m_system->JF_x_reverse(x_node, x_dot_node, t_node) +
1303 this->m_system->JF_x_dot_reverse(x_node, x_dot_node, t_node) / h;
1322 Real & h_new,
MatrixK & K)
const
1325 VectorN K_ini(VectorN::Zero());
1328 for (
Integer n{0}; n < S; ++n) {
1329 if (this->m_newtonX.solve(
1330 [
this, n, &K, &x_old, t_old, h_old](
VectorN const & K_fun,
VectorN & fun)
1331 {K.col(n) = K_fun; this->dirk_function(n, x_old, t_old, h_old, K, fun);},
1332 [
this, n, &K, &x_old, t_old, h_old](
VectorN const & K_jac,
MatrixN & jac)
1333 {K.col(n) = K_jac; this->dirk_jacobian(n, x_old, t_old, h_old, K, jac);},
1342 x_new = x_old + K * this->m_tableau.
b;
1345 if (this->m_adaptive && this->m_tableau.
is_embedded) {
1346 VectorN x_emb(x_old + K * this->m_tableau.
b_e);
1374 std::array<MatrixN, S> dK_dx;
1375 for (
Integer i{0}; i < S; ++i) {
1377 x_node = x + K(all, seqN(0, i+1)) * this->m_tableau.
A(i, seqN(0, i+1)).transpose();
1378 x_dot_node = K.col(i) / h;
1381 if (!this->m_reverse) {
1382 JF_x = this->m_system->JF_x(x_node, x_dot_node, t + h*this->m_tableau.
c(i));
1383 JF_x_dot = this->m_system->JF_x_dot(x_node, x_dot_node, t + h*this->m_tableau.
c(i));
1385 JF_x = this->m_system->JF_x_reverse(x_node, x_dot_node, t + h*this->m_tableau.
c(i));
1386 JF_x_dot = this->m_system->JF_x_dot_reverse(x_node, x_dot_node, t + h*this->m_tableau.
c(i));
1390 jac = MatrixN::Identity();
1391 for (
Integer j{0}; j < i; ++j) {
1392 jac += dK_dx[j] * this->m_tableau.
A(i, j);
1396 dK_dx[i] = -(JF_x * jac).lu().solve(JF_x_dot / h);
1399 if (!dK_dx[i].allFinite()) {
return false;}
1404 for (
Integer i{0}; i < S; ++i) {Jx += h * dK_dx[i] * this->m_tableau.
b(i);}
1424 #define CMD "Sandals::RungeKutta::step(...): "
1426 SANDALS_ASSERT(this->m_system->in_domain(x_old, t_old),
CMD "in " << this->m_tableau.name <<
1427 " solver, at t = " << t_old <<
", x = " << x_old.transpose() <<
", system out of domain.");
1429 if (this->
is_erk() && this->m_system->is_explicit()) {
1431 }
else if (this->
is_erk() && this->m_system->is_implicit()) {
1434 return this->
dirk_step(x_old, t_old, h_old, x_new, h_new, K);
1436 return this->
irk_step(x_old, t_old, h_old, x_new, h_new, K);
1458 #define CMD "Sandals::RungeKutta::propagate(...): "
1460 if (this->
is_erk() && this->m_system->is_explicit()) {
1462 }
else if (this->
is_erk() && this->m_system->is_implicit()) {
1490 template <
bool Propagate = true>
1494 #define CMD "Sandals::RungeKutta::advance(...): "
1498 h_old <<
", expected > 0.");
1501 if constexpr (Propagate) {Jx.setIdentity();}
1505 if (!this->
step(x_old, t_old, h_old, x_new, h_new, K)) {
1509 Real t_tmp{t_old}, h_tmp{h_old / Real(2.0)};
1512 Integer max_k{this->m_max_substeps * this->m_max_substeps}, k{2};
1516 if (this->
step(x_tmp, t_tmp, h_tmp, x_new, h_new_tmp, K)) {
1518 if constexpr (Propagate) {
1521 if (!this->
propagate(x_tmp, t_tmp, h_tmp, K, Jx_tmp)) {
1523 ", Jacobian propagation failed, aborting.");
1528 if constexpr (Propagate) {Jx *= Jx_tmp;}
1535 if (k > 0 && k < max_k) {
1539 h_tmp = Real(2.0) * h_tmp;
1540 if (this->m_verbose) {
1542 ", integration succedded disable one substepping layer.");
1548 SANDALS_ASSERT(std::isfinite(x_tmp.maxCoeff()),
CMD "in " << this->m_tableau.name <<
1549 " solver, at t = " << t_tmp <<
", ||x||_inf = inf, computation interrupted.");
1556 t_tmp <<
", integration failed with h = " << h_tmp <<
", aborting.");
1561 "at t = " << t_tmp <<
", integration failed, adding substepping layer.");}
1576 if constexpr (Propagate) {
1577 if (!this->
propagate(x_old, t_old, h_old, K, Jx)) {
1579 ", Jacobian propagation failed, aborting.");
1586 if (this->m_projection) {
1588 if (this->
project(x_new, t_old + h_new, x_projected)) {
1589 x_new = x_projected;
1615 template <
bool Propagate = true>
1620 #define CMD "Sandals::RungeKutta::solve(...): "
1623 sol.
resize(t_mesh.size());
1626 sol.
t(0) = t_mesh(0);
1628 sol.
h.col(0) = this->m_system->h(ics, t_mesh(0));
1631 if constexpr (Propagate) {
1632 if (!Jx.allFinite()) {
1634 "contains NaNs or Infs, aborting.");
1640 if (this->m_step_callback) {this->
m_step_callback(0, ics, t_mesh(0));}
1644 VectorN x_old_step(ics), x_new_step(ics);
1646 Real t_step{t_mesh(0)}, h_step{t_mesh(1) - t_mesh(0)}, h_tmp_step{h_step}, h_new_step;
1647 bool mesh_point_bool, saturation_bool;
1651 if (!this->
template advance<Propagate>(x_old_step, t_step, h_step, x_new_step, h_new_step, Jx_step))
1660 if (this->m_adaptive && this->m_tableau.
is_embedded && !mesh_point_bool && saturation_bool) {
1661 h_tmp_step = h_new_step;
1662 h_step = t_mesh(
step+1) - t_step;
1664 h_step = h_new_step;
1668 if (!this->m_adaptive || mesh_point_bool) {
1672 h_step = h_tmp_step;
1675 sol.
t(
step) = t_step;
1676 sol.
x.col(
step) = x_new_step;
1677 sol.
h.col(
step) = this->m_system->h(x_new_step, t_step);
1680 if (this->m_step_callback) {this->
m_step_callback(step, x_new_step, t_step);}
1683 if (std::abs(t_step - t_mesh(last)) <
SQRT_EPSILON) {
break;}
1686 x_old_step = x_new_step;
1689 if constexpr (Propagate) {Jx *= Jx_step;}
1711 return this->
template solve<false>(t_mesh, ics, sol, Jx);
1731 template <
bool Propagate = true>
1738 #define CMD "Sandals::RungeKutta::adaptive_solve(...): "
1741 if constexpr (Propagate) {
1742 if (!Jx.allFinite()) {
1744 "contains NaNs or Infs, aborting.");
1752 return this->
solve(t_mesh, ics, sol);
1753 }
else if (!this->m_adaptive) {
1755 return this->
solve(t_mesh, ics, sol);
1759 Real t_step{t_mesh(0)}, h_step{t_mesh(1) - t_mesh(0)}, h_new_step, scale{100.0};
1760 Real h_min{std::max(this->m_min_step, h_step/scale)}, h_max{scale*h_step};
1762 Integer safety_length{
static_cast<Integer>(std::ceil(std::abs(t_mesh(last) - t_mesh(0))/(2.0*h_min)))};
1763 sol.
resize(safety_length);
1765 sol.
resize(t_mesh.size());
1769 sol.
t(0) = t_mesh(0);
1771 sol.
h.col(0) = this->m_system->h(ics, t_mesh(0));
1774 if constexpr (Propagate) {Jx.setIdentity();}
1777 if (this->m_step_callback) {this->
m_step_callback(0, ics, t_mesh(0));}
1781 VectorN x_old_step(ics), x_new_step(ics);
1786 this->
template advance<Propagate>(x_old_step, t_step, h_step, x_new_step, h_new_step, Jx_step);
1792 if (this->m_adaptive && this->m_tableau.
is_embedded) {
1793 h_step = std::max(std::min(h_new_step, h_max), h_min);
1802 sol.
t(
step) = t_step;
1803 sol.
x.col(
step) = x_new_step;
1804 sol.
h.col(
step) = this->m_system->h(x_new_step, t_step);
1807 if (this->m_step_callback) {this->
m_step_callback(step, x_new_step, t_step);}
1810 if (std::abs(t_step - t_mesh(last)) <
SQRT_EPSILON) {
break;}
1811 else if (t_step + h_step > t_mesh(last)) {h_step = t_mesh(last) - t_step;}
1814 x_old_step = x_new_step;
1817 if constexpr (Propagate) {Jx *= Jx_step;}
1857 #define CMD "Sandals::RungeKutta::project(...): "
1868 A.template block<N, N>(0, 0) = MatrixN::Identity();
1869 for (
Integer k{0}; k < this->m_max_projection_iterations; ++k) {
1879 h = this->m_system->h(x_projected, t);
1880 Jh_x = this->m_system->Jh_x(x_projected, t);
1883 if (h.norm() < this->m_projection_tolerance) {
return true;}
1886 A.template block<N, M>(0, N) = Jh_x.transpose();
1887 A.template block<M, N>(N, 0) = Jh_x;
1888 b.template head<N>() = x - x_projected;
1889 b.template tail<M>() = -h;
1892 this->m_lu.compute(
A);
1894 x_step = this->m_lu.solve(
b);
1897 if (x_step.norm() < this->m_projection_tolerance * this->m_projection_tolerance) {
return false;}
1900 x_projected.noalias() += x_step(Eigen::seqN(0, N));
1923 std::vector<Integer>
const & projected_invariants,
VectorN & x_projected)
const
1925 #define CMD "Sandals::RungeKutta::project_ics(...): "
1939 A.block(0, 0, X, X) = MatrixX::Identity(X+H, X+H);
1940 Eigen::FullPivLU<MatrixX> lu;
1941 for (
Integer k{0}; k < this->m_max_projection_iterations; ++k) {
1951 h = this->m_system->h(x_projected, t);
1952 Jh_x = this->m_system->Jh_x(x_projected, t);
1955 h = h(projected_invariants);
1956 Jh_x = Jh_x(projected_invariants, projected_equations);
1959 if (h.norm() < this->m_projection_tolerance) {
return true;}
1962 A.block(0, X, X, H) = Jh_x.transpose();
1963 A.block(X, 0, H, X) = Jh_x;
1964 b.head(X) = x(projected_equations) - x_projected(projected_equations);
1970 x_step = this->m_lu.solve(
b);
1973 if (x_step.norm() < this->m_projection_tolerance * this->m_projection_tolerance) {
return false;}
1976 x_projected(projected_equations).noalias() += x_step;
1998 #define CMD "Sandals::RungeKutta::estimate_order(...): "
2002 for (
Integer i{0}; i < static_cast<Integer>(t_mesh.size()); ++i) {
2006 CMD "expected the same initial time.");
2008 CMD "expected the same final time.");
2011 for (
Integer j{1}; j < static_cast<Integer>(t_mesh[i].size()); ++j) {
2013 CMD "expected a fixed step.");
2020 VectorX h_vec(t_mesh.size()), e_vec(t_mesh.size());
2021 for (
Integer i{0}; i < static_cast<Integer>(t_mesh.size()); ++i) {
2023 "the" << i <<
"-th time mesh.");
2024 sol_ana = sol(sol_num.
t);
2026 CMD "expected the same number of states in analytical solution.");
2028 CMD "expected the same number of steps in analytical solution.");
2029 h_vec(i) = std::abs(sol_num.
t(1) - sol_num.
t(0));
2030 e_vec(i) = (sol_ana - sol_num.
x).array().abs().maxCoeff();
2036 return ((
A.transpose() *
A).ldlt().solve(
A.transpose() *
b))(0);
#define SANDALS_BASIC_CONSTANTS(Real)
Definition Sandals.hh:70
#define SANDALS_ERROR(MSG)
Definition Sandals.hh:34
#define SANDALS_ASSERT(COND, MSG)
Definition Sandals.hh:44
#define SANDALS_WARNING(MSG)
Definition Sandals.hh:53
Class container for the system of explicit ODEs.
Definition Explicit.hh:42
MatrixJF Jf_x_reverse(VectorF const &x, Real const t) const
Definition Explicit.hh:170
virtual VectorF f(VectorF const &x, Real const t) const =0
virtual MatrixJF Jf_x(VectorF const &x, Real const t) const =0
VectorF f_reverse(VectorF const &x, Real const t) const
Definition Explicit.hh:158
static const FunctionH DefaultH
Definition Explicit.hh:254
std::function< MatrixJF(VectorF const &, Real const)> FunctionJF
Definition Explicit.hh:249
static const FunctionID DefaultID
Definition Explicit.hh:256
std::function< VectorH(VectorF const &, Real const)> FunctionH
Definition Explicit.hh:250
std::function< bool(VectorF const &, Real const)> FunctionID
Definition Explicit.hh:252
static const FunctionJH DefaultJH
Definition Explicit.hh:255
std::function< MatrixJH(VectorF const &, Real const)> FunctionJH
Definition Explicit.hh:251
std::function< VectorF(VectorF const &, Real const)> FunctionF
Definition Explicit.hh:248
Eigen::Matrix< Real, N, N > MatrixJF
Definition Implicit.hh:47
Eigen::Vector< Real, N > VectorF
Definition Implicit.hh:46
Eigen::Vector< Real, M > VectorH
Definition Implicit.hh:48
std::shared_ptr< Implicit< Real, N, M > > Pointer
Definition Implicit.hh:45
Eigen::Matrix< Real, M, N > MatrixJH
Definition Implicit.hh:49
std::function< bool(VectorF const &, Real const)> FunctionID
Definition Implicit.hh:279
std::function< VectorF(VectorF const &, VectorF const &, Real const)> FunctionF
Definition Implicit.hh:275
std::function< MatrixJF(VectorF const &, VectorF const &, Real const)> FunctionJF
Definition Implicit.hh:276
std::function< VectorH(VectorF const &, Real const)> FunctionH
Definition Implicit.hh:277
std::function< MatrixJH(VectorF const &, Real const)> FunctionJH
Definition Implicit.hh:278
static const FunctionID DefaultID
Definition Implicit.hh:283
static const FunctionH DefaultH
Definition Implicit.hh:281
static const FunctionJH DefaultJH
Definition Implicit.hh:282
std::function< VectorB(Real const)> FunctionB
Definition Linear.hh:212
static const FunctionH DefaultH
Definition Linear.hh:217
std::function< MatrixE(Real const)> FunctionE
Definition Linear.hh:210
static const FunctionJH DefaultJH
Definition Linear.hh:218
static const FunctionID DefaultID
Definition Linear.hh:219
std::function< MatrixJH(VectorF const &, Real const)> FunctionJH
Definition Linear.hh:214
std::function< bool(VectorF const &, Real const)> FunctionID
Definition Linear.hh:215
std::function< MatrixA(Real const)> FunctionA
Definition Linear.hh:211
std::function< VectorH(VectorF const &, Real const)> FunctionH
Definition Linear.hh:213
Real & min_step()
Definition RungeKutta.hh:471
bool projection()
Definition RungeKutta.hh:603
bool adaptive_mode()
Definition RungeKutta.hh:495
bool is_erk() const
Definition RungeKutta.hh:147
typename Tableau< Real, S >::Matrix MatrixS
Definition RungeKutta.hh:69
Real estimate_order(std::vector< VectorX > const &t_mesh, VectorN const &ics, std::function< MatrixX(VectorX)> &sol) const
Definition RungeKutta.hh:1994
void enable_reverse_mode()
Definition RungeKutta.hh:554
void projection(bool t_projection)
Definition RungeKutta.hh:609
void dirk_function(Integer n, VectorN const &x, Real const t, Real const h, MatrixK const &K, VectorN &fun) const
Definition RungeKutta.hh:1244
typename Tableau< Real, S >::Vector VectorS
Definition RungeKutta.hh:68
Real & min_safety_factor()
Definition RungeKutta.hh:447
void semi_explicit_system(typename SemiExplicitWrapper< Real, N, M >::FunctionA A, typename SemiExplicitWrapper< Real, N, M >::FunctionTA TA_x, typename SemiExplicitWrapper< Real, N, M >::FunctionB b, typename SemiExplicitWrapper< Real, N, M >::FunctionJB Jb_x, typename SemiExplicitWrapper< Real, N, M >::FunctionH h=SemiExplicitWrapper< Real, N, M >::DefaultH, typename SemiExplicitWrapper< Real, N, M >::FunctionJH Jh_x=SemiExplicitWrapper< Real, N, M >::DefaultJH, typename SemiExplicitWrapper< Real, N, M >::FunctionID in_domain=SemiExplicitWrapper< Real, N, M >::DefaultID)
Definition RungeKutta.hh:365
bool propagate(VectorN const &x, Real const t, Real const h, MatrixK const &K, MatrixJX &Jx) const
Definition RungeKutta.hh:1456
bool reverse_mode()
Definition RungeKutta.hh:543
typename Implicit< Real, N, M >::MatrixJF MatrixN
Definition RungeKutta.hh:71
void erk_implicit_function(Integer const s, VectorN const &x, Real const t, Real const h, MatrixK const &K, VectorN &fun) const
Definition RungeKutta.hh:822
Real & safety_factor()
Definition RungeKutta.hh:435
Real m_absolute_tolerance
Definition RungeKutta.hh:91
Real m_min_safety_factor
Definition RungeKutta.hh:94
RungeKutta & operator=(RungeKutta const &)=delete
bool irk_propagate(VectorN const &x, Real const t, Real const h, MatrixK const &K, MatrixJX &Jx) const
Definition RungeKutta.hh:1164
typename Implicit< Real, N, M >::MatrixJH MatrixM
Definition RungeKutta.hh:73
Eigen::Matrix< Real, N+M, 1 > VectorP
Definition RungeKutta.hh:64
Tableau< Real, S > & tableau()
Definition RungeKutta.hh:165
System system()
Definition RungeKutta.hh:225
VectorS b_embedded() const
Definition RungeKutta.hh:213
RungeKutta(const RungeKutta &)=delete
bool solve(VectorX const &t_mesh, VectorN const &ics, Solution< Real, N, M > &sol, MatrixJX &Jx) const
Definition RungeKutta.hh:1616
FunctionSC step_callback()
Definition RungeKutta.hh:565
typename Implicit< Real, N, M >::Pointer System
Definition RungeKutta.hh:80
bool step(VectorN const &x_old, Real const t_old, Real const h_old, VectorN &x_new, Real &h_new, MatrixK &K) const
Definition RungeKutta.hh:1421
void enable_projection()
Definition RungeKutta.hh:614
Eigen::Matrix< Real, N *N, S > MatrixJK
Definition RungeKutta.hh:62
RungeKutta(Tableau< Real, S > const &t_tableau, System t_system)
Definition RungeKutta.hh:132
Real m_relative_tolerance
Definition RungeKutta.hh:92
Integer & max_substeps()
Definition RungeKutta.hh:483
typename Implicit< Real, N, M >::VectorF VectorN
Definition RungeKutta.hh:70
void linear_system(std::string name, typename LinearWrapper< Real, N, M >::FunctionE E, typename LinearWrapper< Real, N, M >::FunctionA A, typename LinearWrapper< Real, N, M >::FunctionB b, typename LinearWrapper< Real, N, M >::FunctionH h=LinearWrapper< Real, N, M >::DefaultH, typename LinearWrapper< Real, N, M >::FunctionJH Jh_x=LinearWrapper< Real, N, M >::DefaultJH, typename LinearWrapper< Real, N, M >::FunctionID in_domain=LinearWrapper< Real, N, M >::DefaultID)
Definition RungeKutta.hh:343
RungeKutta(Tableau< Real, S > const &t_tableau)
Definition RungeKutta.hh:122
Eigen::Matrix< Real, N+M, N+M > MatrixP
Definition RungeKutta.hh:65
void adaptive(bool t_adaptive)
Definition RungeKutta.hh:501
Integer order() const
Definition RungeKutta.hh:189
void projection_tolerance(Real const t_projection_tolerance)
Definition RungeKutta.hh:583
Eigen::Matrix< Real, N *S, N *S > MatrixJ
Definition RungeKutta.hh:63
void irk_jacobian(VectorN const &x, Real const t, Real const h, VectorK const &K, MatrixJ &jac) const
Definition RungeKutta.hh:1067
VectorS b() const
Definition RungeKutta.hh:207
typename Tableau< Real, S >::Type Type
Definition RungeKutta.hh:81
bool erk_explicit_step(VectorN const &x_old, Real const t_old, Real const h_old, VectorN &x_new, Real &h_new, MatrixK &K) const
Definition RungeKutta.hh:722
NewtonX m_newtonX
Definition RungeKutta.hh:85
bool dirk_propagate(VectorN const &x, Real const t, Real const h, MatrixK const &K, MatrixJX &Jx) const
Definition RungeKutta.hh:1365
static constexpr Integer stages()
Definition RungeKutta.hh:177
bool is_dirk() const
Definition RungeKutta.hh:159
VectorS c() const
Definition RungeKutta.hh:219
void reverse(bool t_reverse)
Definition RungeKutta.hh:549
bool m_reverse
Definition RungeKutta.hh:100
bool m_adaptive
Definition RungeKutta.hh:98
void max_safety_factor(Real const t_max_safety_factor)
Definition RungeKutta.hh:465
Eigen::Vector< Real, Eigen::Dynamic > VectorX
Definition RungeKutta.hh:55
std::string name() const
Definition RungeKutta.hh:183
Real m_min_step
Definition RungeKutta.hh:96
bool adaptive_solve(VectorX const &t_mesh, VectorN const &ics, Solution< Real, N, M > &sol, MatrixJX &Jx) const
Definition RungeKutta.hh:1732
void implicit_system(typename ImplicitWrapper< Real, N, M >::FunctionF F, typename ImplicitWrapper< Real, N, M >::FunctionJF JF_x, typename ImplicitWrapper< Real, N, M >::FunctionJF JF_x_dot, typename ImplicitWrapper< Real, N, M >::FunctionH h=ImplicitWrapper< Real, N, M >::DefaultH, typename ImplicitWrapper< Real, N, M >::FunctionJH Jh_x=ImplicitWrapper< Real, N, M >::DefaultJH, typename ImplicitWrapper< Real, N, M >::FunctionID in_domain=ImplicitWrapper< Real, N, M >::DefaultID)
Definition RungeKutta.hh:242
void semi_explicit_system(std::string name, typename SemiExplicitWrapper< Real, N, M >::FunctionA A, typename SemiExplicitWrapper< Real, N, M >::FunctionTA TA_x, typename SemiExplicitWrapper< Real, N, M >::FunctionB b, typename SemiExplicitWrapper< Real, N, M >::FunctionJB Jb_x, typename SemiExplicitWrapper< Real, N, M >::FunctionH h=SemiExplicitWrapper< Real, N, M >::DefaultH, typename SemiExplicitWrapper< Real, N, M >::FunctionJH Jh_x=SemiExplicitWrapper< Real, N, M >::DefaultJH, typename SemiExplicitWrapper< Real, N, M >::FunctionID in_domain=SemiExplicitWrapper< Real, N, M >::DefaultID)
Definition RungeKutta.hh:388
void enable_adaptive_mode()
Definition RungeKutta.hh:506
Real projection_tolerance()
Definition RungeKutta.hh:577
void verbose_mode(bool t_verbose)
Definition RungeKutta.hh:523
Real real_type
Definition RungeKutta.hh:54
std::function< void(Integer const, VectorX const &, Real const)> FunctionSC
Definition RungeKutta.hh:74
void absolute_tolerance(Real const t_absolute_tolerance)
Definition RungeKutta.hh:417
void erk_implicit_jacobian(Integer const s, VectorN const &x, Real const t, Real const h, MatrixK const &K, MatrixN &jac) const
Definition RungeKutta.hh:866
Real relative_tolerance()
Definition RungeKutta.hh:423
bool verbose_mode()
Definition RungeKutta.hh:517
void linear_system(typename LinearWrapper< Real, N, M >::FunctionE E, typename LinearWrapper< Real, N, M >::FunctionA A, typename LinearWrapper< Real, N, M >::FunctionB b, typename LinearWrapper< Real, N, M >::FunctionH h=LinearWrapper< Real, N, M >::DefaultH, typename LinearWrapper< Real, N, M >::FunctionJH Jh_x=LinearWrapper< Real, N, M >::DefaultJH, typename LinearWrapper< Real, N, M >::FunctionID in_domain=LinearWrapper< Real, N, M >::DefaultID)
Definition RungeKutta.hh:322
const Real SQRT_EPSILON
Definition RungeKutta.hh:78
void explicit_system(typename ExplicitWrapper< Real, N, M >::FunctionF f, typename ExplicitWrapper< Real, N, M >::FunctionJF Jf_x, typename ExplicitWrapper< Real, N, M >::FunctionH h=ExplicitWrapper< Real, N, M >::DefaultH, typename ExplicitWrapper< Real, N, M >::FunctionJH Jh_x=ExplicitWrapper< Real, N, M >::DefaultJH, typename ExplicitWrapper< Real, N, M >::FunctionID in_domain=ExplicitWrapper< Real, N, M >::DefaultID)
Definition RungeKutta.hh:283
Eigen::FullPivLU< MatrixP > m_lu
Definition RungeKutta.hh:87
bool erk_explicit_propagate(VectorN const &x, Real const t, Real const h, MatrixK const &K, MatrixJX &Jx) const
Definition RungeKutta.hh:764
System m_system
Definition RungeKutta.hh:90
void min_safety_factor(Real const t_min_safety_factor)
Definition RungeKutta.hh:453
Tableau< Real, S > m_tableau
Definition RungeKutta.hh:89
bool solve(VectorX const &t_mesh, VectorN const &ics, Solution< Real, N, M > &sol) const
Definition RungeKutta.hh:1708
bool adaptive_solve(VectorX const &t_mesh, VectorN const &ics, Solution< Real, N, M > &sol) const
Definition RungeKutta.hh:1840
void relative_tolerance(Real const t_relative_tolerance)
Definition RungeKutta.hh:429
void max_substeps(Integer const t_max_substeps)
Definition RungeKutta.hh:489
void min_step(Real const t_min_step)
Definition RungeKutta.hh:477
Eigen::Matrix< Real, N, S > MatrixK
Definition RungeKutta.hh:61
void enable_verbose_mode()
Definition RungeKutta.hh:532
Integer & max_projection_iterations()
Definition RungeKutta.hh:590
bool is_irk() const
Definition RungeKutta.hh:153
Optimist::RootFinder::Newton< Real, N > NewtonX
Definition RungeKutta.hh:66
void step_callback(FunctionSC const &t_step_callback)
Definition RungeKutta.hh:571
bool erk_implicit_step(VectorN const &x_old, Real const t_old, Real const h_old, VectorN &x_new, Real &h_new, MatrixK &K) const
Definition RungeKutta.hh:893
Real m_projection_tolerance
Definition RungeKutta.hh:103
Eigen::Matrix< Real, N, N > MatrixJX
Definition RungeKutta.hh:56
FunctionSC m_step_callback
Definition RungeKutta.hh:101
Real estimate_step(VectorN const &x, VectorN const &x_e, Real const h_k) const
Definition RungeKutta.hh:655
void dirk_jacobian(Integer n, VectorN const &x, Real const t, Real const h, MatrixK const &K, MatrixN &jac) const
Definition RungeKutta.hh:1290
void system(System t_system)
Definition RungeKutta.hh:231
void disable_adaptive_mode()
Definition RungeKutta.hh:511
Tableau< Real, S > const & tableau() const
Definition RungeKutta.hh:171
Real m_max_safety_factor
Definition RungeKutta.hh:95
bool erk_implicit_propagate(VectorN const &x, Real const t, Real const h, MatrixK const &K, MatrixJX &Jx) const
Definition RungeKutta.hh:937
bool m_verbose
Definition RungeKutta.hh:99
Real m_safety_factor
Definition RungeKutta.hh:93
bool project_ics(VectorN const &x, Real const t, std::vector< Integer > const &projected_equations, std::vector< Integer > const &projected_invariants, VectorN &x_projected) const
Definition RungeKutta.hh:1922
void disable_reverse_mode()
Definition RungeKutta.hh:559
bool dirk_step(VectorN const &x_old, Real const t_old, Real const h_old, VectorN &x_new, Real &h_new, MatrixK &K) const
Definition RungeKutta.hh:1321
Eigen::Vector< Real, N *S > VectorK
Definition RungeKutta.hh:60
void info(std::ostream &os)
Definition RungeKutta.hh:697
Type type() const
Definition RungeKutta.hh:141
void disable_projection()
Definition RungeKutta.hh:619
Eigen::Matrix< Real, Eigen::Dynamic, Eigen::Dynamic > MatrixX
Definition RungeKutta.hh:59
void max_projection_iterations(Integer const t_max_projection_iterations)
Definition RungeKutta.hh:596
void safety_factor(Real const t_safety_factor)
Definition RungeKutta.hh:441
Eigen::Vector< Real, Eigen::Dynamic > Time
Definition RungeKutta.hh:82
void disable_verbose_mode()
Definition RungeKutta.hh:537
Integer m_max_substeps
Definition RungeKutta.hh:97
bool is_embedded() const
Definition RungeKutta.hh:195
std::string info() const
Definition RungeKutta.hh:669
void explicit_system(std::string name, typename ExplicitWrapper< Real, N, M >::FunctionF f, typename ExplicitWrapper< Real, N, M >::FunctionJF Jf_x, typename ExplicitWrapper< Real, N, M >::FunctionH h=ExplicitWrapper< Real, N, M >::DefaultH, typename ExplicitWrapper< Real, N, M >::FunctionJH Jh_x=ExplicitWrapper< Real, N, M >::DefaultJH, typename ExplicitWrapper< Real, N, M >::FunctionID in_domain=ExplicitWrapper< Real, N, M >::DefaultID)
Definition RungeKutta.hh:302
bool has_system()
Definition RungeKutta.hh:405
void irk_function(VectorN const &x, Real const t, Real const h, VectorK const &K, VectorK &fun) const
Definition RungeKutta.hh:1015
typename Implicit< Real, N, M >::VectorH VectorM
Definition RungeKutta.hh:72
MatrixS A() const
Definition RungeKutta.hh:201
Real absolute_tolerance()
Definition RungeKutta.hh:411
Optimist::RootFinder::Newton< Real, N *S > NewtonK
Definition RungeKutta.hh:67
Integer m_max_projection_iterations
Definition RungeKutta.hh:104
bool project(VectorN const &x, Real const t, VectorN &x_projected) const
Definition RungeKutta.hh:1855
bool advance(VectorN const &x_old, Real const t_old, Real const h_old, VectorN &x_new, Real &h_new, MatrixJX &Jx) const
Definition RungeKutta.hh:1491
NewtonK m_newtonK
Definition RungeKutta.hh:86
void implicit_system(std::string name, typename ImplicitWrapper< Real, N, M >::FunctionF F, typename ImplicitWrapper< Real, N, M >::FunctionJF JF_x, typename ImplicitWrapper< Real, N, M >::FunctionJF JF_x_dot, typename ImplicitWrapper< Real, N, M >::FunctionH h=ImplicitWrapper< Real, N, M >::DefaultH, typename ImplicitWrapper< Real, N, M >::FunctionJH Jh_x=ImplicitWrapper< Real, N, M >::DefaultJH, typename ImplicitWrapper< Real, N, M >::FunctionID in_domain=ImplicitWrapper< Real, N, M >::DefaultID)
Definition RungeKutta.hh:263
Real & max_safety_factor()
Definition RungeKutta.hh:459
bool irk_step(VectorN const &x_old, Real const t_old, Real const h_old, VectorN &x_new, Real &h_new, MatrixK &K) const
Definition RungeKutta.hh:1121
bool m_projection
Definition RungeKutta.hh:105
std::function< MatrixJB(VectorF const &, Real const)> FunctionJB
Definition SemiExplicit.hh:273
static const FunctionH DefaultH
Definition SemiExplicit.hh:278
std::function< bool(VectorF const &, Real const)> FunctionID
Definition SemiExplicit.hh:276
std::function< VectorH(VectorF const &, Real const)> FunctionH
Definition SemiExplicit.hh:274
std::function< VectorB(VectorF const &, Real const)> FunctionB
Definition SemiExplicit.hh:272
std::function< TensorTA(VectorF const &, Real const)> FunctionTA
Definition SemiExplicit.hh:271
std::function< MatrixA(VectorF const &, Real const)> FunctionA
Definition SemiExplicit.hh:270
static const FunctionJH DefaultJH
Definition SemiExplicit.hh:279
static const FunctionID DefaultID
Definition SemiExplicit.hh:280
std::function< MatrixJH(VectorF const &, Real const)> FunctionJH
Definition SemiExplicit.hh:275
The namespace for the Sandals library.
Definition Sandals.hh:89
SANDALS_DEFAULT_INTEGER_TYPE Integer
The Integer type as used for the API.
Definition Sandals.hh:97
Class container for the numerical solution of a system of ODEs/DAEs.
Definition Solution.hh:62
MatrixN x
Definition Solution.hh:68
Integer size() const
Definition Solution.hh:126
void resize(Integer const size)
Definition Solution.hh:87
void conservative_resize(Integer const size)
Definition Solution.hh:97
Vector t
Definition Solution.hh:67
MatrixM h
Definition Solution.hh:69
Struct container for the Butcher tableau of a Runge-Kutta method.
Definition Tableau.hh:38
enum class type :Integer {ERK=0, IRK=1, DIRK=2} Type
Definition Tableau.hh:42
Type type
Definition Tableau.hh:47
Integer order
Definition Tableau.hh:48
std::string name
Definition Tableau.hh:46
Vector b_e
Definition Tableau.hh:52
Eigen::Matrix< Real, S, S > Matrix
Definition Tableau.hh:44
Matrix A
Definition Tableau.hh:50
Eigen::Vector< Real, S > Vector
Definition Tableau.hh:43
Vector c
Definition Tableau.hh:53
Vector b
Definition Tableau.hh:51
bool is_embedded
Definition Tableau.hh:54