Class container for the Hooke and Jeeves Pattern Search algorithm.
More...
#include <ParticleSwarm.hh>
Inherits Optimist::Optimizer::Optimizer< Real, N, PatternSearch< Real, N >, true >, and Optimist::Optimizer::Optimizer< Real, N, PatternSearch< Real, N >, true >.
|
| | PatternSearch () |
| std::string | name_impl () const |
| void | set_max_num_stagnation (integer nstg) |
| void | search () |
| void | best_nearby () |
| template<typename FunctionLambda> |
| bool | solve_impl (FunctionLambda &&function, Vector const &x_ini, Vector &x_sol) |
| | PatternSearch () |
| std::string | name_impl () const |
| void | set_max_num_stagnation (integer nstg) |
| void | search () |
| void | best_nearby () |
| template<typename FunctionLambda> |
| bool | solve_impl (FunctionLambda &&function, Vector const &x_ini, Vector &x_sol) |
| | Optimizer () |
| std::string | name () const |
| Integer | gradient_evaluations () const |
| Integer | max_gradient_evaluations () const |
| Integer | hessian_evaluations () const |
| Integer | max_hessian_evaluations () const |
| | SolverBase () |
| InputType const & | lower_bound () const |
| InputType const & | upper_bound () const |
| void | bounds (InputType const &t_lower_bound, InputType const &t_upper_bound) |
| constexpr Integer | input_dimension () const |
| constexpr Integer | output_dimension () const |
| Integer | function_evaluations () const |
| void | max_function_evaluations (Integer t_max_function_evaluations) |
| Integer | iterations () const |
| Integer | max_iterations () const |
| Real | alpha () const |
| Integer | relaxations () const |
| Integer | max_relaxations () const |
| Real | tolerance () const |
| void | verbose_mode (bool t_verbose) |
| void | enable_verbose_mode () |
| void | disable_verbose_mode () |
| void | damped_mode (bool t_damped) |
| void | enable_damped_mode () |
| void | disable_damped_mode () |
| std::string | task () const |
| bool | converged () const |
| const TraceType & | trace () const |
| std::ostream & | ostream () const |
| bool | solve (FunctionLambda &&function, InputType const &x_ini, InputType &x_sol) |
| bool | rootfind (FunctionBase< Real, FunInDim, FunOutDim, DerivedFunction, ForceEigen &&FunOutDim==1 > const &function, InputType const &x_ini, InputType &x_sol) |
| bool | optimize (FunctionBase< Real, FunInDim, FunOutDim, DerivedFunction, ForceEigen &&FunOutDim==1 > const &function, InputType const &x_ini, InputType &x_sol) |
| std::string | name () const |
|
| bool | evaluate_gradient (GradientLambda &&gradient, Vector const &x, Matrix &out) |
| bool | evaluate_hessian (HessianLambda &&hessian, Vector const &x, Matrix &out) |
| bool | solve (FunctionLambda &&function, Vector const &x_ini, Vector &x_sol) |
| Integer | first_derivative_evaluations () const |
| Integer | max_first_derivative_evaluations () const |
| Integer | second_derivative_evaluations () const |
| Integer | max_second_derivative_evaluations () const |
| void | reset () |
| bool | evaluate_function (FunctionLambda &&function, InputType const &x, OutputType &out) |
| bool | evaluate_first_derivative (FirstDerivativeLambda &&function, InputType const &x, FirstDerivativeType &out) |
| bool | evaluate_second_derivative (SecondDerivativeLambda &&function, InputType const &x, SecondDerivativeType &out) |
| void | store_trace (InputType const &x) |
| bool | damp (FunctionLambda &&function, InputType const &x_old, InputType const &function_old, InputType const &step_old, InputType &x_new, InputType &function_new, InputType &step_new) |
| void | header () |
| void | bottom () |
| void | info (Real residuals, std::string const ¬es="-") |
| InputType | m_lower_bound |
| InputType | m_upper_bound |
| Integer | m_function_evaluations |
| Integer | m_first_derivative_evaluations |
| Integer | m_second_derivative_evaluations |
| Integer | m_max_function_evaluations |
| Integer | m_max_first_derivative_evaluations |
| Integer | m_max_second_derivative_evaluations |
| Integer | m_iterations |
| Integer | m_max_iterations |
| Real | m_alpha |
| Integer | m_relaxations |
| Integer | m_max_relaxations |
| Real | m_tolerance |
| bool | m_verbose |
| bool | m_damped |
| std::ostream * | m_ostream |
| std::string | m_task |
| bool | m_converged |
| TraceType | m_trace |
template<typename Real,
Integer N>
class Optimist::Optimizer::PatternSearch< Real, N >
- Template Parameters
-
| Real | Scalar number type. |
| N | Dimension of the root-finding problem. |
◆ Simplex [1/2]
◆ Simplex [2/2]
◆ PatternSearch() [1/2]
◆ PatternSearch() [2/2]
◆ best_nearby() [1/2]
◆ best_nearby() [2/2]
◆ name_impl() [1/2]
Get the Nelder-Mead's solver name.
- Returns
- The Nelder-Mead's solver name.
◆ name_impl() [2/2]
Get the Nelder-Mead's solver name.
- Returns
- The Nelder-Mead's solver name.
◆ search() [1/2]
◆ search() [2/2]
◆ set_max_num_stagnation() [1/2]
◆ set_max_num_stagnation() [2/2]
◆ solve_impl() [1/2]
template<typename FunctionLambda>
Solve the nonlinear system of equations \( \mathbf{f}(\mathbf{x}) = 0 \), with \(\mathbf{f}: \mathbb{R}^n \rightarrow \mathbb{R}^n \).
- Template Parameters
-
- Parameters
-
| [in] | function | Function lambda. |
| [in] | x_ini | Initialization point. |
| [out] | x_sol | Solution point. |
- Returns
- The convergence boolean flag.
◆ solve_impl() [2/2]
template<typename FunctionLambda>
Solve the nonlinear system of equations \( \mathbf{f}(\mathbf{x}) = 0 \), with \(\mathbf{f}: \mathbb{R}^n \rightarrow \mathbb{R}^n \).
- Template Parameters
-
- Parameters
-
| [in] | function | Function lambda. |
| [in] | x_ini | Initialization point. |
| [out] | x_sol | Solution point. |
- Returns
- The convergence boolean flag.
◆ m_h
◆ m_rho
◆ m_stencil_failure
◆ requires_first_derivative
◆ requires_function
◆ requires_second_derivative
The documentation for this class was generated from the following files: